IDEAS home Printed from https://ideas.repec.org/p/mmf/mmfc05/30.html
   My bibliography  Save this paper

Valuing Structure, Model Uncertainty and Model Averaging in Vector Autoregressive Process

Author

Listed:
  • Rodney W Strachan

    (University of Leicester)

  • Herman K van Dijik

    (Erasmus University Rotterdam)

Abstract

Economic policy decisions are often informed by empirical analysis based on accurate econometric modeling. However, a decision-maker is usually only interested in good estimates of outcomes, while an analyst must also be interested in estimating the model. Accurate inference on structural features of a model improves policy analysis as it improves estimation, inference and forecast efficiency. In this paper a Bayesian inferential procedure is presented which allows for unconditional inference on structural features of vector autoregressive (VAR) processes. We employ measures on manifolds in order to elicit uniform priors on subspaces defined by particular structural features of VARs. The features considered are cointegration, exogeneity, deterministic processes and overidentification. Posterior probabilities of these features are used in a model averaging approach for forecasting and impulse response analysis. The methods are applied to three empirical economic issues: stability of Australian money demand; relative weights of permanent and transitory shocks in a US real business cycle model; and possible evidence on an inflationary oil price shock and a liquidity trap in a UK macroeconomic model. The results obtained illustrate the feasibility of the proposed methods.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Rodney W Strachan & Herman K van Dijik, 2005. "Valuing Structure, Model Uncertainty and Model Averaging in Vector Autoregressive Process," Money Macro and Finance (MMF) Research Group Conference 2005 30, Money Macro and Finance Research Group.
  • Handle: RePEc:mmf:mmfc05:30
    as

    Download full text from publisher

    File URL: http://repec.org/mmfc05/paper30.pdf
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gary Koop & Roberto León-González & Rodney W. Strachan, 2010. "Efficient Posterior Simulation for Cointegrated Models with Priors on the Cointegration Space," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 224-242, April.
    2. Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
    3. Rodney W. Strachan & Herman K. van Dijk, 2014. "Divergent Priors and Well Behaved Bayes Factors," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 6(1), pages 1-31, March.
    4. Andrea Silvestrini, 2010. "Testing fiscal sustainability in Poland: a Bayesian analysis of cointegration," Empirical Economics, Springer, vol. 39(1), pages 241-274, August.
    5. Gary Koop & Rodney Strachan & Herman van Dijk & Mattias Villani, 2004. "Bayesian Approaches to Cointegration," Discussion Papers in Economics 04/27, Department of Economics, University of Leicester.
    6. David Ardia & Lukasz T. Gatarek & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Return and Risk of Pairs Trading Using a Simulation-Based Bayesian Procedure for Predicting Stable Ratios of Stock Prices," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-19, March.
    7. repec:gam:jecnmx:v:4:y:2016:i:1:p:14:d:65426 is not listed on IDEAS

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mmf:mmfc05:30. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.essex.ac.uk/afm/mmf/index.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.