IDEAS home Printed from
   My bibliography  Save this paper

A methodology for demand learning with an application to the optimal pricing of seasonal products


  • Bitran, Gabriel R.
  • Wadhwa, Hitendra K. S. (Hitendra Kumar Singh)


No abstract is available for this item.

Suggested Citation

  • Bitran, Gabriel R. & Wadhwa, Hitendra K. S. (Hitendra Kumar Singh), 1996. "A methodology for demand learning with an application to the optimal pricing of seasonal products," Working papers 3898-96., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:2619

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Samuel Karlin, 1960. "Dynamic Inventory Policy with Varying Stochastic Demands," Management Science, INFORMS, vol. 6(3), pages 231-258, April.
    2. Sang Hoon Chang & David E. Fyffe, 1971. "Estimation of Forecast Errors for Seasonal-Style-Goods Sales," Management Science, INFORMS, vol. 18(2), pages 89-96, October.
    3. Katy S. Azoury, 1985. "Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution," Management Science, INFORMS, vol. 31(9), pages 1150-1160, September.
    4. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    5. Wallace B. Crowston & Warren H. Hausman & William R. Kampe, II, 1973. "Multistage Production for Stochastic Seasonal Demand," Management Science, INFORMS, vol. 19(8), pages 924-935, April.
    6. Warren H. Hausman & Rein Peterson, 1972. "Multiproduct Production Scheduling for Style Goods with Limited Capacity, Forecast Revisions and Terminal Delivery," Management Science, INFORMS, vol. 18(7), pages 370-383, March.
    7. Warren H. Hausman, 1969. "Sequential Decision Problems: A Model to Exploit Existing Forecasters," Management Science, INFORMS, vol. 16(2), pages 93-111, October.
    8. Popovic, Jovan B., 1987. "Decision making on stock levels in cases of uncertain demand rate," European Journal of Operational Research, Elsevier, vol. 32(2), pages 276-290, November.
    9. George R. Murray, Jr. & Edward A. Silver, 1966. "A Bayesian Analysis of the Style Goods Inventory Problem," Management Science, INFORMS, vol. 12(11), pages 785-797, July.
    10. Donald L. Iglehart, 1964. "The Dynamic Inventory Problem with Unknown Demand Distribution," Management Science, INFORMS, vol. 10(3), pages 429-440, April.
    Full references (including those not matched with items on IDEAS)

    More about this item


    HD28 .M414 no.3898-96;

    JEL classification:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:2619. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.