IDEAS home Printed from
   My bibliography  Save this paper

On fractal distribution function estimation and applications


  • Stefano Maria Iacus


  • Davide La Torre



In this paper we review some recent results concerning the approximations of distribution functions and measures on [0,1] based on iterated function systems. The two different approaches available in the literature are considered and their relation are investigated in the statistical perspective. In the second part of the paper we propose a new class of estimators for the distribution function and the related characteristic and density functions. Glivenko-Cantelli, LIL properties and local asymptotic minimax efficiency are established for some of the proposed estimators. Via Monte Carlo analysis we show that, for small sample sizes, the proposed estimator can be as efficient or even better than the empirical distribution function and the kernel density estimator respectively. This paper is to be considered as a first attempt in the construction of new class of estimators based on fractal objects. Pontential applications to survival analysis with random censoring are proposed at the end of the paper.

Suggested Citation

  • Stefano Maria Iacus & Davide La Torre, 2002. "On fractal distribution function estimation and applications," Departmental Working Papers 2002-07, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2002-07

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Stefano Maria Iacus & Davide La Torre, 2002. "Approximating distribution functions by iterated function systems," Departmental Working Papers 2002-03, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2002-07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEMM Working Papers) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.