IDEAS home Printed from https://ideas.repec.org/p/lat/lateco/1999-07.html
   My bibliography  Save this paper

Interpretation of the RAS method : absorption and fabrication effects are incorrect

Author

Listed:
  • MESNARD, Louis de

    (LATEC - CNRS - Université de Bourgogne)

Abstract

The r and s vectors of the RAS method of updating matrices are presented often as corresponding to an absorption effect and a fabrication effect. Here, it is proved that these vectors are unidentified, so their interpretation in terms of fabrication and absorption effect is incorrect..

Suggested Citation

  • MESNARD, Louis de, 1999. "Interpretation of the RAS method : absorption and fabrication effects are incorrect," LATEC - Document de travail - Economie (1991-2003) 9907, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
  • Handle: RePEc:lat:lateco:1999-07
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Gabrielle Demange & Michel L. Balinski, 1989. "An Axiomatic Approach to Proportionality between Matrices," Post-Print halshs-00670952, HAL.
    2. M. L. Balinski & G. Demange, 1989. "An Axiomatic Approach to Proportionality Between Matrices," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 700-719, November.
    3. Louis de Mesnard, 1994. "Unicity of biproportion," Post-Print hal-00383947, HAL.
    4. Louis de Mesnard, 1997. "A biproportional filter to compare technical and allocation coefficient variations," Post-Print hal-00383934, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabrielle Demange, 2018. "New electoral systems and old referendums," PSE Working Papers hal-01852206, HAL.
    2. Demange, Gabrielle, 2012. "On party-proportional representation under district distortions," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 181-191.
    3. Oelbermann, Kai-Friederike, 2016. "Alternate Scaling algorithm for biproportional divisor methods," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 25-32.
    4. Gabrielle Demange, 2021. "On the resolution of cross-liabilities," PSE Working Papers halshs-03151128, HAL.
    5. Gabrielle Demange, 2013. "On Allocating Seats To Parties And Districts: Apportionments," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-14.
    6. Michel Balinski, 2007. "Equitable representation and recruitment," Annals of Operations Research, Springer, vol. 149(1), pages 27-36, February.
    7. Paolo Serafini, 2015. "Certificates of optimality for minimum norm biproportional apportionments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(1), pages 1-12, January.
    8. Demange, Gabrielle, 2017. "Mutual rankings," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 35-42.
    9. Moulin, Hervé, 2016. "Entropy, desegregation, and proportional rationing," Journal of Economic Theory, Elsevier, vol. 162(C), pages 1-20.
    10. Marjorie B. Gassner, 1991. "Biproportional Delegations," Journal of Theoretical Politics, , vol. 3(3), pages 321-342, July.
    11. Michel L. Balinski & Gabrielle Demange, 1989. "Algorithm for Proportional Matrices in Reals and Integers," Post-Print halshs-00585327, HAL.
    12. Victoriano Ramírez-González & Blanca Delgado-Márquez & Antonio Palomares & Adolfo López-Carmona, 2014. "Evaluation and possible improvements of the Swedish electoral system," Annals of Operations Research, Springer, vol. 215(1), pages 285-307, April.
    13. Gabrielle Demange, 2018. "Mechanisms in a Digitalized World," CESifo Working Paper Series 6984, CESifo.
    14. Attila Tasnádi, 2008. "The extent of the population paradox in the Hungarian electoral system," Public Choice, Springer, vol. 134(3), pages 293-305, March.
    15. Ricca, Federica & Scozzari, Andrea & Simeone, Bruno, 2011. "The give-up problem for blocked regional lists with multi-winners," Mathematical Social Sciences, Elsevier, vol. 62(1), pages 14-24, July.
    16. Friedrich Pukelsheim, 2014. "Biproportional scaling of matrices and the iterative proportional fitting procedure," Annals of Operations Research, Springer, vol. 215(1), pages 269-283, April.
    17. Gabrielle Demange, 2020. "Resolution rules in a system of financially linked firms," Working Papers hal-02502413, HAL.
    18. Casiano A. Manrique-de-Lara-Peñate & Dolores R. Santos-Peñate, 2017. "SAM updating using multi-objective optimization techniques," Papers in Regional Science, Wiley Blackwell, vol. 96(3), pages 647-667, August.
    19. Gaffke, Norbert & Pukelsheim, Friedrich, 2008. "Divisor methods for proportional representation systems: An optimization approach to vector and matrix apportionment problems," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 166-184, September.
    20. Isabella Lari & Federica Ricca & Andrea Scozzari, 2014. "Bidimensional allocation of seats via zero-one matrices with given line sums," Annals of Operations Research, Springer, vol. 215(1), pages 165-181, April.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • D57 - Microeconomics - - General Equilibrium and Disequilibrium - - - Input-Output Tables and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lat:lateco:1999-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/latecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.