IDEAS home Printed from
   My bibliography  Save this paper

Non-Atomic Games on Loeb Spaces


  • M Ali Khan
  • Yeneng Sun


In the setting of non-cooperative game theory strategic negligibility of individual agents or diffuseness of information has been modelled as a non-atomic measure space typically the unit interval endowed with Lebesgue measure However recent work has shown that with uncountable action sets as for example the unit interval there do not exist pure-strategy Nash equilibria in such non-atomic games In this brief announcement we show that there is a perfectly satisfactory existence theory for non-atomic games provided this non-atomicity is formulated on the basis of a particular class of measure spaces hyperfinite Loeb spaces We also emphasize other desirable properties of games on hyperfinite Loeb spaces and present a synthetic treatment embracing both large games as well as those with incomplete information

Suggested Citation

  • M Ali Khan & Yeneng Sun, 1996. "Non-Atomic Games on Loeb Spaces," Economics Working Paper Archive 374, The Johns Hopkins University,Department of Economics, revised Aug 1996.
  • Handle: RePEc:jhu:papers:374

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Beißner, Patrick & Khan, M. Ali, 2019. "On Hurwicz–Nash equilibria of non-Bayesian games under incomplete information," Games and Economic Behavior, Elsevier, vol. 115(C), pages 470-490.
    2. M. Ali Khan, 2007. "Perfect Competition," PIDE-Working Papers 2007:15, Pakistan Institute of Development Economics.
    3. Sun, Yeneng, 1998. "A theory of hyperfinite processes: the complete removal of individual uncertainty via exact LLN1," Journal of Mathematical Economics, Elsevier, vol. 29(4), pages 419-503, May.
    4. Khan, M. Ali & Zhang, Yongchao, 2014. "On the existence of pure-strategy equilibria in games with private information: A complete characterization," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 197-202.
    5. Van Zandt, Timothy & Vives, Xavier, 2007. "Monotone equilibria in Bayesian games of strategic complementarities," Journal of Economic Theory, Elsevier, vol. 134(1), pages 339-360, May.
    6. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    7. Fu, Haifeng & Xu, Ying & Zhang, Luyi, 2007. "Characterizing Pure-strategy Equilibria in Large Games," MPRA Paper 7514, University Library of Munich, Germany.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jhu:papers:374. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (None) The email address of this maintainer does not seem to be valid anymore. Please ask None to update the entry or send us the correct email address. General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.