IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp13664.html

Exponential Growth Bias in the Prediction of COVID-19 Spread and Economic Expectation

Author

Listed:
  • Banerjee, Ritwik

    (Indian Institute of Management)

  • Majumdar, Priyama

    (Indian Institute of Management Bangalore)

Abstract

Exponential growth bias (EGB) is the pervasive tendency of people to perceive a growth process as linear when, in fact, it is exponential. In this paper, we document that people exhibit EGB when asked to predict the number of COVID-19 positive cases in the future. The bias is positively correlated with optimistic expectations about the future macroeconomic conditions and personal economic circumstances, and investment in a risky asset. We design four interventions to correct EGB and evaluate them through a randomized experiment. In the first treatment (Step), participants make predictions in several short steps; in the second and third treatments (Feedback-N and Feedback-G) participants are given feedback about their prediction errors either in the form of numbers or graphs; and in the fourth treatment (Forecast), participants are offered a forecast range of the future number of cases, based on a statistical model. Our results show that a) Step helps mitigate EGB relative to Baseline, b) Feedback-N, Feedback-G, and Forecast significantly reduce bias relative to both Baseline and Step, c) the interventions decrease risky investment and help moderate future economic expectations through the reduction in EGB. The results suggest that nudges, such as behaviorally informed communication strategies, which correct EGB can also help rationalize economic expectations.

Suggested Citation

  • Banerjee, Ritwik & Majumdar, Priyama, 2020. "Exponential Growth Bias in the Prediction of COVID-19 Spread and Economic Expectation," IZA Discussion Papers 13664, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp13664
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp13664.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Jäckle & Thomas Waldvogel, 2022. "Attitudes toward Coronavirus Protection Measures among German School Students: The Effects of Education and Knowledge about the Pandemic," Social Sciences, MDPI, vol. 11(7), pages 1-13, June.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp13664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.