IDEAS home Printed from
   My bibliography  Save this paper

On efficient simulation in dynamic models


  • Abadir Karim M.

    () (Imperial College London, London)

  • Paruolo Paolo

    () (Department of Economics, University of Insubria, Italy)


Ways of improving the efficiency of Monte-Carlo (MC) techniques are studied for dynamic models. Such models cause the conventional Antithetic Variate (AV) technique to fail, and will be proved to reduce the benefit from using Control Variates with nearly nonstationary series. This paper suggests modifications of the two conventional variance reduction techniques to enhance their efficiency. New classes of AVs are also proposed. Methods of reordering innovations are found to do less well than others which rely on changing some signs in the spirit of the traditional AV. Numerical and analytical calculations are given to investigate the features of the proposed techniques. JEL classification code: C15 Key words: Dynamic models, Monte-Carlo (MC), Variance Reduction Technique (VRT), Antithetic Variate (AV), Control Variate (CV), Efficiency Gain (EG), Response Surface (RS).

Suggested Citation

  • Abadir Karim M. & Paruolo Paolo, 2008. "On efficient simulation in dynamic models," Economics and Quantitative Methods qf0709, Department of Economics, University of Insubria.
  • Handle: RePEc:ins:quaeco:qf0709

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. repec:spr:compst:v:46:y:1997:i:2:p:193-211 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lawford, Steve & Stamatogiannis, Michalis P., 2009. "The finite-sample effects of VAR dimensions on OLS bias, OLS variance, and minimum MSE estimators," Journal of Econometrics, Elsevier, vol. 148(2), pages 124-130, February.

    More about this item

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ins:quaeco:qf0709. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Segreteria Dipartimento). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.