IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v205y2025i2d10.1007_s10957-025-02617-4.html
   My bibliography  Save this article

Strict Efficiency in Set Optimization Studied with the Set Approach

Author

Listed:
  • Truong Xuan Duc Ha

    (Thanglong University)

Abstract

This paper is devoted to strict efficiency in set optimization studied with the set approach. Strict efficient solutions are defined with respect to the l-type less order relation and the possibly less order relation. Scalar characterization and necessary and/or sufficient conditions for such solutions are obtained. In particular, we establish some conditions expressed in terms of a high-order directional derivative of set-valued maps and the (convex or limiting) subdifferentials, normal cones and coderivatives. Various illustrating examples are presented.

Suggested Citation

  • Truong Xuan Duc Ha, 2025. "Strict Efficiency in Set Optimization Studied with the Set Approach," Journal of Optimization Theory and Applications, Springer, vol. 205(2), pages 1-20, May.
  • Handle: RePEc:spr:joptap:v:205:y:2025:i:2:d:10.1007_s10957-025-02617-4
    DOI: 10.1007/s10957-025-02617-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02617-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02617-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vu Anh Tuan & Christiane Tammer & Constantin Zălinescu, 2016. "The Lipschitzianity of convex vector and set-valued functions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 273-299, April.
    2. Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
    3. Marius Durea & Radu Strugariu, 2023. "Directional derivatives and subdifferentials for set-valued maps applied to set optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 687-707, March.
    4. Xuan Duc Ha Truong, 2018. "Slopes, Error Bounds and Weak Sharp Pareto Minima of a Vector-Valued Map," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 634-649, March.
    5. M. Durea, 2010. "Remarks on strict efficiency in scalar and vector optimization," Journal of Global Optimization, Springer, vol. 47(1), pages 13-27, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marius Durea & Radu Strugariu & Christiane Tammer, 2017. "On Some Methods to Derive Necessary and Sufficient Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 738-763, December.
    2. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    3. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    4. Abadir, Karim, 1995. "On Efficient Simulations in Dynamic Models," Discussion Papers 9521, University of Exeter, Department of Economics.
    5. Luciano Fratocchi & Alberto Onetti & Alessia Pisoni & Marco Talaia, 2007. "Location of value added activities in hi-tech industries. The case of pharma-biotech firms in Italy," Economics and Quantitative Methods qf0708, Department of Economics, University of Insubria.
    6. Giovanni P. Crespi & Carola Schrage, 2021. "Applying set optimization to weak efficiency," Annals of Operations Research, Springer, vol. 296(1), pages 779-801, January.
    7. S. J. Li & K. L. Teo & X. Q. Yang, 2008. "Higher-Order Optimality Conditions for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 533-553, June.
    8. L. Huerga & B. Jiménez & V. Novo & A. Vílchez, 2021. "Six set scalarizations based on the oriented distance: continuity, convexity and application to convex set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 413-436, April.
    9. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    10. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    11. Qamrul Hasan Ansari & Pradeep Kumar Sharma, 2022. "Some Properties of Generalized Oriented Distance Function and their Applications to Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 247-279, June.
    12. Marius Durea & Elena-Andreea Florea, 2023. "Directional and approximate efficiency in set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(3), pages 435-459, December.
    13. X. X. Huang, 2012. "Calmness and Exact Penalization in Constrained Scalar Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 108-119, July.
    14. P. Q. Khanh & N. D. Tuan, 2008. "Variational Sets of Multivalued Mappings and a Unified Study of Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 47-65, October.
    15. Zi-Ru Zhang & Yang-Dong Xu, 2024. "The Continuity and Convexity of a Nonlinear Scalarization Function with Applications in Set Optimization Problems Involving a Partial Order Relation," Mathematics, MDPI, vol. 12(23), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:205:y:2025:i:2:d:10.1007_s10957-025-02617-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.