IDEAS home Printed from https://ideas.repec.org/p/icr/wpmath/17-2007.html
   My bibliography  Save this paper

The Bernstein-Von Mises Theorem in Semiparametric Competing Risks Models

Author

Listed:
  • Pierpaolo De Blasi

    ()

  • Nils L. Hjort

Abstract

Semiparametric Bayesian models are nowadays a popular tool in survival analysis. An important area of research concerns the investigation of frequentist properties of these models. In this paper, a Bernstein-von Mises theorem is derived for semiparametric Bayesian models of competing risks data. The cause-specific hazard is taken as the product of the conditional probability of a failure type and the overall hazard rate. We model the conditional probability as a smooth function of time and leave the cumulative overall hazard unspecified. A prior distribution is defined on the joint parameter space, which includes a beta process prior for the cumulative overall hazard. We show that the posterior distribution for any differentiable functional of interest is asymptotically equivalent to the sampling distribution derived from maximum likelihood estimation. A simulation study is provided to illustrate the coverage properties of credible intervals on cumulative incidence functions.

Suggested Citation

  • Pierpaolo De Blasi & Nils L. Hjort, 2007. "The Bernstein-Von Mises Theorem in Semiparametric Competing Risks Models," ICER Working Papers - Applied Mathematics Series 17-2007, ICER - International Centre for Economic Research.
  • Handle: RePEc:icr:wpmath:17-2007
    as

    Download full text from publisher

    File URL: http://www.bemservizi.unito.it/repec/icr/wp2007/ICERwp17-07.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Dario Gasbarra, 2000. "Analysis of Competing Risks by Using Bayesian Smoothing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 605-617.
    2. Pierpaolo De Blasi & Nils Lid Hjort, 2007. "Bayesian Survival Analysis in Proportional Hazard Models with Logistic Relative Risk," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 229-257.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:17-2007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Pellegrino). General contact details of provider: http://edirc.repec.org/data/icerrit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.