IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Bernstein-Von Mises Theorem in Semiparametric Competing Risks Models

Listed author(s):
  • Pierpaolo De Blasi


  • Nils L. Hjort
Registered author(s):

    Semiparametric Bayesian models are nowadays a popular tool in survival analysis. An important area of research concerns the investigation of frequentist properties of these models. In this paper, a Bernstein-von Mises theorem is derived for semiparametric Bayesian models of competing risks data. The cause-specific hazard is taken as the product of the conditional probability of a failure type and the overall hazard rate. We model the conditional probability as a smooth function of time and leave the cumulative overall hazard unspecified. A prior distribution is defined on the joint parameter space, which includes a beta process prior for the cumulative overall hazard. We show that the posterior distribution for any differentiable functional of interest is asymptotically equivalent to the sampling distribution derived from maximum likelihood estimation. A simulation study is provided to illustrate the coverage properties of credible intervals on cumulative incidence functions.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by ICER - International Centre for Economic Research in its series ICER Working Papers - Applied Mathematics Series with number 17-2007.

    in new window

    Length: 22 pages
    Date of creation: Mar 2007
    Handle: RePEc:icr:wpmath:17-2007
    Contact details of provider: Postal:
    Corso Unione Sovietica, 218bis - 10134 Torino - Italy

    Phone: +39 011 6706060
    Fax: +39 011 6706062
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Dario Gasbarra, 2000. "Analysis of Competing Risks by Using Bayesian Smoothing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 605-617.
    2. Pierpaolo De Blasi & Nils Lid Hjort, 2007. "Bayesian Survival Analysis in Proportional Hazard Models with Logistic Relative Risk," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 229-257.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:17-2007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Pellegrino)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.