IDEAS home Printed from
   My bibliography  Save this paper

Local Quantile Regression


  • Wolfgang Karl Härdle
  • Vladimir Spokoiny
  • Weining Wang


Conditional quantile curves provide a comprehensive picture of a response contingent on explanatory variables. Quantile regression is a technique to estimate such curves. In a flexible modeling framework, a specific form of the quantile is not a priori fixed. Indeed, the majority of applications do not per se require specific functional forms. This motivates a local parametric rather than a global fixed model fitting approach. A nonparametric smoothing estimate of the conditional quantile curve requires to consider a balance between local curvature and variance. In this paper, we analyze a method based on a local model selection technique that provides an adaptive estimate. Theoretical properties on mimicking the oracle choice are offered and applications to stock market and weather analysis are presented.

Suggested Citation

  • Wolfgang Karl Härdle & Vladimir Spokoiny & Weining Wang, 2011. "Local Quantile Regression," SFB 649 Discussion Papers SFB649DP2011-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2011-005

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Conditional Quantiles; Semiparametric and Nonparametric Methods; Asymmetric Laplace Distribution; Exponential Risk Bounds; Adaptive Bandwidth Selection;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2011-005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RDC-Team (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.