IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2005-030.html
   My bibliography  Save this paper

The Shannon Information of Filtrations and the Additional Logarithmic Utility of Insiders

Author

Listed:
  • Stefan Ankirchner
  • Steffen Dereich
  • Peter Imkeller

Abstract

The background for the general mathematical link between utility and information theory investigated in this paper is a simple financial market model with two kinds of small traders: less informed traders and insiders, whose extra information is represented by an enlargement of the other agents’ filtration. The expected logarithmic utility increment, i.e. the difference of the insider’s and the less informed trader’s expected logarithmic utility is described in terms of the information drift, i.e. the drift one has to eliminate in order to perceive the price dynamics as a martingale from the insider’s perspective. On the one hand, we describe the information drift in a very general setting by natural quantities expressing the probabilistic better informed view of the world. This on the other hand allows us to identify the additional utility by entropy related quantities known from information theory. In particular, in a complete market in which the insider has some fixed additional information during the entire trading interval, its utility increment can be represented by the Shannon information of his extra knowledge. For general markets, and in some particular examples, we provide estimates of maximal utility by information inequalities.

Suggested Citation

  • Stefan Ankirchner & Steffen Dereich & Peter Imkeller, 2005. "The Shannon Information of Filtrations and the Additional Logarithmic Utility of Insiders," SFB 649 Discussion Papers SFB649DP2005-030, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2005-030
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2005-030.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 263-286, July.
    2. Imkeller, Peter & Pontier, Monique & Weisz, Ferenc, 2001. "Free lunch and arbitrage possibilities in a financial market model with an insider," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 103-130, March.
    3. José Mª Corcuera & Peter Imkeller & Arturo Kohatsu & David Nualart, 2003. "Additional utility of insiders with imperfect dynamical information," Economics Working Papers 675, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Martin Schweizer & Dirk Becherer & Jürgen Amendinger, 2003. "A monetary value for initial information in portfolio optimization," Finance and Stochastics, Springer, vol. 7(1), pages 29-46.
    5. Duffie, Darrell & Huang, Chi-fu, 1986. "Multiperiod security markets with differential information : Martingales and resolution times," Journal of Mathematical Economics, Elsevier, vol. 15(3), pages 283-303, June.
    6. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," SFB 373 Discussion Papers 1998,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Ankirchner, 2005. "Utility duality under additional information: conditional measures versus filtration enlargements," SFB 649 Discussion Papers SFB649DP2005-029, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Keywords

    enlargement of filtration; logarithmic utility; utility maximization; heterogeneous information; insider model; Shannon information; information difference; entropy; differential entropy;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2005-030. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.