IDEAS home Printed from
   My bibliography  Save this paper

New Liu Estimators for the Poisson Regression Model: Method and Application


  • Månsson, Kristofer

    () (Jönköping University)

  • Kibria, B. M. Golam

    (Florida International University)

  • Sjölander, Pär

    (Jönköping University)

  • Shukur, Ghazi

    (Linnaeus University)


A new shrinkage estimator for the Poisson model is introduced in this paper. This method is a generalization of the Liu (1993) estimator originally developed for the linear regression model and will be generalised here to be used instead of the classical maximum likelihood (ML) method in the presence of multicollinearity since the mean squared error (MSE) of ML becomes inflated in that situation. Furthermore, this paper derives the optimal value of the shrinkage parameter and based on this value some methods of how the shrinkage parameter should be estimated are suggested. Using Monte Carlo simulation where the MSE and mean absolute error (MAE) are calculated it is shown that when the Liu estimator is applied with these proposed estimators of the shrinkage parameter it always outperforms the ML. Finally, an empirical application has been considered to illustrate the usefulness of the new Liu estimators.

Suggested Citation

  • Månsson, Kristofer & Kibria, B. M. Golam & Sjölander, Pär & Shukur, Ghazi, 2011. "New Liu Estimators for the Poisson Regression Model: Method and Application," HUI Working Papers 51, HUI Research.
  • Handle: RePEc:hhs:huiwps:0051

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Månsson, Kristofer & Shukur, Ghazi, 2011. "A Poisson ridge regression estimator," Economic Modelling, Elsevier, vol. 28(4), pages 1475-1481, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Estimation; MSE; MAE; Multicollinearity; Poisson; Liu; Simulation;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:huiwps:0051. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Nilsson). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.