IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04429434.html
   My bibliography  Save this paper

Techies and Firm Level Productivity

Author

Listed:
  • J.J. Harrigan

    (University of Virginia)

  • Ariell Reshef

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, CEPII - Centre d'Etudes Prospectives et d'Informations Internationales - Centre d'analyse stratégique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Farid Toubal

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique, CEPII - Centre d'Etudes Prospectives et d'Informations Internationales - Centre d'analyse stratégique, CEPR - Center for Economic Policy Research, LEDa - Laboratoire d'Economie de Dauphine - IRD - Institut de Recherche pour le Développement - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

We study the impact of techies—engineers and other technically trained workers—on firm-level productivity. We first report new facts on the role of techies in the firm by using French administrative data and unique surveys. Techies are STEM-skill intensive and are associated with innovation, as well as with technology adoption, management, and diffusion within firms. Using structural econometric methods, we estimate the causal effect of techies on firm-level Hicks-neutral productivity in both manufacturing and non-manufacturing industries. We find that techies raise firm-level productivity, and this effect goes beyond the employment of R&D workers, extending to ICT and other techies. In non-manufacturing firms, the impact of techies on productivity operates mostly through ICT and other techies, not R&D workers. Engineers have a greater effect on productivity than technicians.

Suggested Citation

  • J.J. Harrigan & Ariell Reshef & Farid Toubal, 2023. "Techies and Firm Level Productivity," Working Papers hal-04429434, HAL.
  • Handle: RePEc:hal:wpaper:hal-04429434
    DOI: 10.3386/w31341
    Note: View the original document on HAL open archive server: https://hal.science/hal-04429434v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04429434v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.3386/w31341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nicholas Bloom & Luis Garicano & Raffaella Sadun & John Van Reenen, 2014. "The Distinct Effects of Information Technology and Communication Technology on Firm Organization," Management Science, INFORMS, vol. 60(12), pages 2859-2885, December.
    2. Jan De Loecker, 2013. "Detecting Learning by Exporting," American Economic Journal: Microeconomics, American Economic Association, vol. 5(3), pages 1-21, August.
    3. Ashish Arora & Sharon Belenzon & Lia Sheer, 2017. "Back to Basics: Why do Firms Invest in Research?," NBER Working Papers 23187, National Bureau of Economic Research, Inc.
    4. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    5. Timothy F. Bresnahan & Erik Brynjolfsson & Lorin M. Hitt, 2002. "Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 339-376.
    6. Erling Barth & James C. Davis & Richard B. Freeman & Andrew J. Wang, 2018. "The Effects of Scientists and Engineers on Productivity and Earnings at the Establishment Where They Work," NBER Chapters, in: US Engineering in a Global Economy, pages 167-191, National Bureau of Economic Research, Inc.
    7. John M. Abowd & Francis Kramarz & David N. Margolis, 1999. "High Wage Workers and High Wage Firms," Econometrica, Econometric Society, vol. 67(2), pages 251-334, March.
    8. Hanlon, W. Walker, 2022. "The Rise of the Engineer: Inventing the Professional Inventor During the Industrial Revolution," CEPR Discussion Papers 17013, C.E.P.R. Discussion Papers.
    9. Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
    10. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    11. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    12. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    13. Prasanna Tambe & Lorin M. Hitt, 2012. "The Productivity of Information Technology Investments: New Evidence from IT Labor Data," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 599-617, September.
    14. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    15. Ulrich Doraszelski & Jordi Jaumandreu, 2013. "R&D and Productivity: Estimating Endogenous Productivity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1338-1383.
    16. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flavio Calvino & Luca Fontanelli, 2023. "Artificial intelligence, complementary assets and productivity: evidence from French firms," LEM Papers Series 2023/35, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Harrigan & Ariell Reshef & Farid Toubal, 2018. "Techies, Trade, and Skill-Biased Productivity," NBER Working Papers 25295, National Bureau of Economic Research, Inc.
    2. Richter, Philipp M. & Schiersch, Alexander, 2017. "CO2 emission intensity and exporting: Evidence from firm-level data," European Economic Review, Elsevier, vol. 98(C), pages 373-391.
    3. Zach Flynn, 2020. "Identifying productivity when it is a factor of production," RAND Journal of Economics, RAND Corporation, vol. 51(2), pages 496-530, June.
    4. Emannuel Dhyne & Joep Konings & Joep Konings & Stijn Vanormelingen,, 2018. "IT and productivity: A firm level analysis," Working Paper Research 346, National Bank of Belgium.
    5. Jaan Masso & Amaresh K Tiwari, 2021. "Productivity Implications Of R&D, Innovation And Capital Accumulation For Incumbents And Entrants: The Case Of Estonia," University of Tartu - Faculty of Economics and Business Administration Working Paper Series 130, Faculty of Economics and Business Administration, University of Tartu (Estonia).
    6. Mauro Caselli & Arpita Chatterjee & Shengyu Li, 2023. "Productivity and Quality of Multi-product Firms," Discussion Papers 2023-10, School of Economics, The University of New South Wales.
    7. Emanuele Forlani & Ralf Martin & Giordano Mion & Mirabelle Muûls, 2023. "Unraveling Firms: Demand, Productivity and Markups Heterogeneity," The Economic Journal, Royal Economic Society, vol. 133(654), pages 2251-2302.
    8. Jingfang Zhang & Emir Malikov, 2023. "Detecting Learning by Exporting and from Exporters," Journal of Productivity Analysis, Springer, vol. 60(1), pages 1-19, August.
    9. Becker, Annette & Hottenrott, Hanna & Mukherjee, Anwesha, 2022. "Division of labor in R&D? Firm size and specialization in corporate research," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 1-23.
    10. Wolfhard Kaus & Viktor Slavtchev & Markus Zimmermann, 2024. "Intangible capital and productivity: Firm-level evidence from German manufacturing," Oxford Economic Papers, Oxford University Press, vol. 76(4), pages 970-996.
    11. Eric J. Bartelsman & Martin Falk & Eva Hagsten & Michael Polder, 2019. "Productivity, technological innovations and broadband connectivity: firm-level evidence for ten European countries," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 25-48, March.
    12. Benjamin Lochner & Bastian Schulz, 2024. "Firm Productivity, Wages, and Sorting," Journal of Labor Economics, University of Chicago Press, vol. 42(1), pages 85-119.
    13. Hüseyin Taştan & Feride Gönel, 2020. "ICT labor, software usage, and productivity: firm-level evidence from Turkey," Journal of Productivity Analysis, Springer, vol. 53(2), pages 265-285, April.
    14. Konings, Jozef & Dhyne, Emmanuel & Van den bosch, Jeroen & ,, 2018. "The Return on Information Technology: Who Benefits Most?," CEPR Discussion Papers 13246, C.E.P.R. Discussion Papers.
    15. Cusolito,Ana Paula & Lederman,Daniel & Pena,Jorge O., 2020. "The Effects of Digital-Technology Adoption on Productivity and Factor Demand : Firm-level Evidence from Developing Countries," Policy Research Working Paper Series 9333, The World Bank.
    16. Chen, Minjia & Matousek, Roman, 2020. "Do productive firms get external finance? Evidence from Chinese listed manufacturing firms," International Review of Financial Analysis, Elsevier, vol. 67(C).
    17. Emir Malikov & Shunan Zhao & Subal C. Kumbhakar, 2020. "Estimation of firm‐level productivity in the presence of exports: Evidence from China's manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 457-480, June.
    18. Andrés Mauricio Gómez‐Sánchez & Juan A. Mañez & Juan A. Sanchis‐Llopis, 2022. "Are importing and exporting complements or substitutes in an emerging economy? The case of Colombia," Review of International Economics, Wiley Blackwell, vol. 30(3), pages 819-835, August.
    19. Francesco Manaresi & Nicola Pierri, 2018. "Credit supply and productivity growth," Temi di discussione (Economic working papers) 1168, Bank of Italy, Economic Research and International Relations Area.
    20. Francesco Manaresi & Nicola Pierri, 2018. "Credit supply and productivity growth," BIS Working Papers 711, Bank for International Settlements.

    More about this item

    Keywords

    productivity; R&D; ICT; techies; STEM skills;
    All these keywords.

    JEL classification:

    • D2 - Microeconomics - - Production and Organizations
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • F1 - International Economics - - Trade
    • F16 - International Economics - - Trade - - - Trade and Labor Market Interactions
    • F6 - International Economics - - Economic Impacts of Globalization
    • F66 - International Economics - - Economic Impacts of Globalization - - - Labor
    • J2 - Labor and Demographic Economics - - Demand and Supply of Labor
    • J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O52 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Europe

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04429434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.