IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03189299.html
   My bibliography  Save this paper

Computation of the marginal contribution of Sharpe ratio and other performance ratios

Author

Listed:
  • Eric Benhamou

    (MILES - Machine Intelligence and Learning Systems - LAMSADE - Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision - Université Paris Dauphine-PSL - PSL - Université Paris sciences et lettres - CNRS - Centre National de la Recherche Scientifique, LAMSADE - Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision - Université Paris Dauphine-PSL - PSL - Université Paris sciences et lettres - CNRS - Centre National de la Recherche Scientifique)

  • Beatrice Guez

Abstract

Computing incremental contribution of performance ratios like Sharpe, Treynor, Calmar or Sterling ratios is of paramount importance for asset managers. Leveraging Euler's homogeneous function theorem, we are able to prove that these performance ratios are indeed a linear combination of individual modified performance ratios. This allows not only deriving a condition for a new asset to provide incremental performance for the portfolio but also to identify the key drivers of these performance ratios. We provide various numerical examples of this performance ratio decomposition.

Suggested Citation

  • Eric Benhamou & Beatrice Guez, 2021. "Computation of the marginal contribution of Sharpe ratio and other performance ratios," Working Papers hal-03189299, HAL.
  • Handle: RePEc:hal:wpaper:hal-03189299
    Note: View the original document on HAL open archive server: https://hal.science/hal-03189299v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03189299v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serge Darolles & Christian Gouriéroux & Emmanuelle Jay, 2012. "Robust Portfolio Allocation with Systematic Risk Contribution Restrictions," Working Papers 2012-35, Center for Research in Economics and Statistics.
    2. Eugene A. Pilotte & Frederic P. Sterbenz, 2006. "Sharpe and Treynor Ratios on Treasury Bonds," The Journal of Business, University of Chicago Press, vol. 79(1), pages 149-180, January.
    3. Miguel Lobo & Maryam Fazel & Stephen Boyd, 2007. "Portfolio optimization with linear and fixed transaction costs," Annals of Operations Research, Springer, vol. 152(1), pages 341-365, July.
    4. Goto, Shingo & Xu, Yan, 2015. "Improving Mean Variance Optimization through Sparse Hedging Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1415-1441, December.
    5. Eric Benhamou & David Saltiel & Beatrice Guez & Nicolas Paris, 2019. "Testing Sharpe ratio: luck or skill?," Papers 1905.08042, arXiv.org, revised May 2019.
    6. Eric Benhamou, 2018. "Connecting Sharpe ratio and Student t-statistic, and beyond," Papers 1808.04233, arXiv.org, revised May 2019.
    7. repec:dau:papers:123456789/4688 is not listed on IDEAS
    8. Philippe Bertrand, 2009. "Risk-adjusted performance attribution and portfolio optimisations under tracking-error constraints," Journal of Asset Management, Palgrave Macmillan, vol. 10(2), pages 75-88, June.
    9. Nielsen, Lars Tyge & Vassalou, Maria, 2004. "Sharpe Ratios and Alphas in Continuous Time," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(1), pages 103-114, March.
    10. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    11. Eric Benhamou, 2018. "Trend without hiccups: a Kalman filter approach," Papers 1808.03297, arXiv.org.
    12. Treynor, Jack L & Black, Fischer, 1973. "How to Use Security Analysis to Improve Portfolio Selection," The Journal of Business, University of Chicago Press, vol. 46(1), pages 66-86, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Benhamou & Beatrice Guez, 2018. "Incremental Sharpe and other performance ratios," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 7(4), pages 1-2.
    2. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
    3. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & Franc{c}ois Chareyron, 2021. "Adaptive learning for financial markets mixing model-based and model-free RL for volatility targeting," Papers 2104.10483, arXiv.org, revised Apr 2021.
    4. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    5. Eric Benhamou, 2021. "Distribution and statistics of the Sharpe Ratio," Working Papers hal-03207169, HAL.
    6. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    7. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    8. Hsiao-Fen Hsiao & Jiang-Chuan Huang & Zheng-Wei Lin, 2020. "Portfolio construction using bootstrapping neural networks: evidence from global stock market," Review of Derivatives Research, Springer, vol. 23(3), pages 227-247, October.
    9. Andrei Kapaev, 2013. "Remark on repo and options," Papers 1311.5211, arXiv.org.
    10. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    11. Enrico G. De Giorgi & Thierry Post, 2011. "Loss Aversion with a State-Dependent Reference Point," Management Science, INFORMS, vol. 57(6), pages 1094-1110, June.
    12. Mario Alejandro Acosta R., 2014. "Las acciones como activo de reserva para el Banco de la República," Documentos CEDE 11004, Universidad de los Andes, Facultad de Economía, CEDE.
    13. Nonthachote Chatsanga & Andrew J. Parkes, 2016. "International Portfolio Optimisation with Integrated Currency Overlay Costs and Constraints," Papers 1611.01463, arXiv.org.
    14. Grønborg, Niels S. & Lunde, Asger & Timmermann, Allan & Wermers, Russ, 2021. "Picking funds with confidence," Journal of Financial Economics, Elsevier, vol. 139(1), pages 1-28.
    15. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    16. Bessler, Wolfgang & Drobetz, Wolfgang & Henn Overbeck, Jacqueline, 2005. "Hedge Funds: Die Königsdisziplin" der Kapitalanlage," Working papers 2005/04, Faculty of Business and Economics - University of Basel.
    17. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    18. Arbia, Giuseppe & Bramante, Riccardo & Facchinetti, Silvia & Zappa, Diego, 2018. "Modeling inter-country spatial financial interactions with Graphical Lasso: An application to sovereign co-risk evaluation," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 72-79.
    19. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202025, University of California at Riverside, Department of Economics.
    20. Sujoy Mukerji & Han N. Ozsoylev & Jean‐Marc Tallon, 2023. "Trading Ambiguity: A Tale Of Two Heterogeneities," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1127-1164, August.

    More about this item

    Keywords

    portfolio analysis; recovery and incremental Sharpe ratio; Treynor; Sharpe; Marginal contribution;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03189299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.