IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01821148.html
   My bibliography  Save this paper

The asymmetric commodity inventory effect on the optimal hedge ratio

Author

Listed:
  • Jean-François Carpantier

    (CERGAM - Centre d'Études et de Recherche en Gestion d'Aix-Marseille - AMU - Aix Marseille Université - UTLN - Université de Toulon)

  • Besik Samkharadze

Abstract

Hedging strategies for commodity prices largely rely on dynamic models to compute optimal hedge ratios. This paper illustrates the importance of considering the commodity inventory effect (effect by which the commodity price volatility increases more after a positive shock than after a negative shock of the same magnitude) in modelling the variance-covariance dynamics. We show by in-sample and out-of-sample forecasts that a commodity price index portfolio optimized by an asymmetric BEKK-GARCH model outperforms the symmetric BEKK, static (OLS) or naïve models. Robustness checks on a set of commodities and by an alternative mean-variance optimization framework confirm the relevance of taking into account the inventory effect in commodity hedging strategies.

Suggested Citation

  • Jean-François Carpantier & Besik Samkharadze, 2012. "The asymmetric commodity inventory effect on the optimal hedge ratio," Working Papers hal-01821148, HAL.
  • Handle: RePEc:hal:wpaper:hal-01821148
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Donald Lien & Y. K. Tse & Albert Tsui, 2002. "Evaluating the hedging performance of the constant-correlation GARCH model," Applied Financial Economics, Taylor & Francis Journals, vol. 12(11), pages 791-798.
    3. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    4. Chou, Ray Yeutien, 1988. "Volatility Persistence and Stock Valuations: Some Empirical Evidence Using Garch," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(4), pages 279-294, October-D.
    5. Lien, Donald & Yang, Li, 2008. "Asymmetric effect of basis on dynamic futures hedging: Empirical evidence from commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 187-198, February.
    6. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    7. Donald Lien & Li Yang, 2006. "Spot‐futures spread, time‐varying correlation, and hedging with currency futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(10), pages 1019-1038, October.
    8. Ng, Victor K & Pirrong, Stephen Craig, 1994. "Fundamentals and Volatility: Storage, Spreads, and the Dynamics of Metals Prices," The Journal of Business, University of Chicago Press, vol. 67(2), pages 203-230, April.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Chen, Sheng-Syan & Lee, Cheng-few & Shrestha, Keshab, 2003. "Futures hedge ratios: a review," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(3), pages 433-465.
    11. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    12. CARPANTIER, Jean - François, 2010. "Commodities inventory effect," LIDAM Discussion Papers CORE 2010040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    14. Donald Lien & Y. K. Tse, 2002. "Some Recent Developments in Futures Hedging," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 357-396, July.
    15. Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2013. "The Fundamentals of Commodity Futures Returns," Review of Finance, European Finance Association, vol. 17(1), pages 35-105.
    16. repec:bla:jecsur:v:16:y:2002:i:3:p:357-96 is not listed on IDEAS
    17. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. NESTEROV, Yurii & NEMIROVSKI, Arkadi, 2012. "Finding the stationary states of Markov chains by iterative methods," LIDAM Discussion Papers CORE 2012058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. You‐How Go & Jia‐Jun Teo & Kam Fong Chan, 2023. "The effectiveness of crude oil futures hedging during infectious disease outbreaks in the 21st century," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1559-1575, November.
    3. Sercan Demiralay & Selcuk Bayraci & H. Gaye Gencer, 2019. "Time-varying diversification benefits of commodity futures," Empirical Economics, Springer, vol. 56(6), pages 1823-1853, June.
    4. Wen, Danyan & Wang, Yudong & Ma, Chaoqun & Zhang, Yaojie, 2020. "Information transmission between gold and financial assets: Mean, volatility, or risk spillovers?," Resources Policy, Elsevier, vol. 69(C).
    5. Yu, Lean & Zha, Rui & Stafylas, Dimitrios & He, Kaijian & Liu, Jia, 2020. "Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    6. Loïc Maréchal, 2021. "Do economic variables forecast commodity futures volatility?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1735-1774, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    2. Tsuji, Chikashi, 2020. "Correlation and spillover effects between the US and international banking sectors: New evidence and implications for risk management," International Review of Financial Analysis, Elsevier, vol. 70(C).
    3. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.
    4. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    5. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    6. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    7. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    8. Lin, Xiaoqiang & Chen, Qiang & Tang, Zhenpeng, 2014. "Dynamic hedging strategy in incomplete market: Evidence from Shanghai fuel oil futures market," Economic Modelling, Elsevier, vol. 40(C), pages 81-90.
    9. repec:wyi:journl:002103 is not listed on IDEAS
    10. Wu, Ruirui & Qin, Zhongfeng, 2024. "Asymmetric volatility spillovers among new energy, ESG, green bond and carbon markets," Energy, Elsevier, vol. 292(C).
    11. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    12. Zouheir Mighri & Majid Ibrahim Alsaggaf, 2019. "Volatility Spillovers among the Cryptocurrency Time Series," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 81-90.
    13. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Torro, Hipolit, 2009. "Assessing the influence of spot price predictability on electricity futures hedging," MPRA Paper 18892, University Library of Munich, Germany.
    15. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
    16. Kotkatvuori-Örnberg, Juha, 2016. "Dynamic conditional copula correlation and optimal hedge ratios with currency futures," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 60-69.
    17. Manolis Kavussanos & Ilias Visvikis, 2008. "Hedging effectiveness of the Athens stock index futures contracts," The European Journal of Finance, Taylor & Francis Journals, vol. 14(3), pages 243-270.
    18. Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
    19. Abdul Hakim & Michael McAleer, 2009. "VaR Forecasts and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds," CIRJE F-Series CIRJE-F-676, CIRJE, Faculty of Economics, University of Tokyo.
    20. CARPANTIER, Jean - François, 2010. "Commodities inventory effect," LIDAM Discussion Papers CORE 2010040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.

    More about this item

    Keywords

    BEKK; commodity; asymmetries; hedging; inventory effect;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01821148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.