IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00436327.html
   My bibliography  Save this paper

Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends

Author

Listed:
  • Benjamin Jourdain

    (CERMICS - Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique - Inria - Institut National de Recherche en Informatique et en Automatique - ENPC - École des Ponts ParisTech, MATHRISK - Mathematical Risk handling - Inria Paris-Rocquencourt - Inria - Institut National de Recherche en Informatique et en Automatique - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech)

  • Michel Vellekoop

    (ASE - Amsterdam School of Economics - UvA - University of Amsterdam [Amsterdam] = Universiteit van Amsterdam)

Abstract

We analyze the regularity of the optimal exercise boundary for the American Put option when the underlying asset pays a discrete dividend at a known time $t_d$ during the lifetime of the option. The ex-dividend asset price process is assumed to follow Black-Scholes dynamics and the dividend amount is a deterministic function of the ex-dividend asset price just before the dividend date. The solution to the associated optimal stopping problem can be characterised in terms of an optimal exercise boundary which, in contrast to the case when there are no dividends, may no longer be monotone. In this paper we prove that when the dividend function is positive and concave, then the boundary is non-increasing in a left-hand neighbourhood of $t_d$, and tends to $0$ as time tends to $t_d^-$ with a speed that we can characterize. When the dividend function is linear in a neighbourhood of zero, then we show continuity of the exercise boundary and a high contact principle in the left-hand neighbourhood of $t_d$. When it is globally linear, then right-continuity of the boundary and the high contact principle are proved to hold globally. Finally, we show how all the previous results can be extended to multiple dividend payment dates in that case.

Suggested Citation

  • Benjamin Jourdain & Michel Vellekoop, 2009. "Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends," Working Papers hal-00436327, HAL.
  • Handle: RePEc:hal:wpaper:hal-00436327
    Note: View the original document on HAL open archive server: https://hal.science/hal-00436327v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00436327v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamadène, S. & Lepeltier, J. -P., 2000. "Reflected BSDEs and mixed game problem," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 177-188, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamadène, S. & Wang, H., 2009. "BSDEs with two RCLL reflecting obstacles driven by Brownian motion and Poisson measure and a related mixed zero-sum game," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2881-2912, September.
    2. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    3. Bahlali, Khaled & Hamadène, SaI¨d & Mezerdi, Brahim, 2005. "Backward stochastic differential equations with two reflecting barriers and continuous with quadratic growth coefficient," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1107-1129, July.
    4. Klimsiak, Tomasz, 2021. "Non-semimartingale solutions of reflected BSDEs and applications to Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 208-239.
    5. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    6. Ekren, Ibrahim, 2017. "Viscosity solutions of obstacle problems for fully nonlinear path-dependent PDEs," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3966-3996.
    7. Erhan Bayraktar & Song Yao, 2015. "On the Robust Dynkin Game," Papers 1506.09184, arXiv.org, revised Sep 2016.
    8. Zhou, Qing & Ren, Yong, 2012. "Reflected backward stochastic differential equations with time delayed generators," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 979-990.
    9. Choukroun, Sébastien & Cosso, Andrea & Pham, Huyên, 2015. "Reflected BSDEs with nonpositive jumps, and controller-and-stopper games," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 597-633.
    10. Miryana Grigorova & Marie-Claire Quenez & Yuan Peng, 2023. "Non-linear non-zero-sum Dynkin games with Bermudan strategies," Papers 2311.01086, arXiv.org.
    11. Said Hamadène & Monique Jeanblanc, 2007. "On the Starting and Stopping Problem: Application in Reversible Investments," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 182-192, February.
    12. Roxana Dumitrescu & Marie-Claire Quenez & Agn`es Sulem, 2015. "Game options in an imperfect market with default," Papers 1511.09041, arXiv.org, revised Jul 2017.
    13. Huang, Zongyuan & Lepeltier, Jean-Pierre & Wu, Zhen, 2010. "Reflected forward-backward stochastic differential equations with continuous monotone coefficients," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1569-1576, November.
    14. Giovanni Mottola, 2014. "Generalized Dynkin game of switching type representation for defaultable claims in presence of contingent CSA," Papers 1410.0594, arXiv.org, revised Jan 2015.
    15. Nie, Tianyang & Rutkowski, Marek, 2014. "Multi-player stopping games with redistribution of payoffs and BSDEs with oblique reflection," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2672-2698.
    16. Hamadène, Said & Zhang, Jianfeng, 2010. "Switching problem and related system of reflected backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(4), pages 403-426, April.
    17. Grigorova, Miryana & Imkeller, Peter & Quenez, Marie-Claire & Ouknine, Youssef, 2018. "Doubly Reflected BSDEs and $\mathcal{E}$$^ƒ$-Dynkin games: beyond the right-continuous case," Center for Mathematical Economics Working Papers 598, Center for Mathematical Economics, Bielefeld University.
    18. Roman Gayduk & Sergey Nadtochiy, 2020. "Control-Stopping Games for Market Microstructure and Beyond," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1289-1317, November.
    19. Li, Hanwu & Peng, Shige & Soumana Hima, Abdoulaye, 2018. "Reflected Solutions of BSDEs Driven by $\textit{G}$-Brownian Motion," Center for Mathematical Economics Working Papers 590, Center for Mathematical Economics, Bielefeld University.
    20. Lin, Qian, 2009. "A class of backward doubly stochastic differential equations with non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2223-2229, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00436327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.