IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05069567.html
   My bibliography  Save this paper

Clustering Approaches for Mixed‐Type Data: A Comparative Study

Author

Listed:
  • Badih Ghattas

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Alvaro Sanchez San-Benito

    (Airbus Helicopters - Aeroport International de Marseille-Provence)

Abstract

Clustering is widely used in unsupervised learning to fnd homogeneous groups of observations within a dataset. However, clustering mixed-type data remains a challenge, as few existing approaches are suited for this task. Tis study presents the state-of-the-art of these approaches and compares them using various simulation models. Te compared methods include the distance-based approaches k-prototypes, PDQ, and convex k-means, and the probabilistic methods KAy-means for MIxed LArge data (KAMILA), the mixture of Bayesian networks (MBNs), and latent class model (LCM). Te aim is to provide insights into the behavior of diferent methods across a wide range of scenarios by varying some experimental factors such as the number of clusters, cluster overlap, sample size, dimension, proportion of continuous variables in the dataset, and clusters' distribution. Te degree of cluster overlap and the proportion of continuous variables in the dataset and the sample size have a signifcant impact on the observed performances. When strong interactions exist between variables alongside an explicit dependence on cluster membership, none of the evaluated methods demonstrated satisfactory performance. In our experiments KAMILA, LCM, and k-prototypes exhibited the best performance, with respect to the adjusted rand index (ARI). All the methods are available in R.

Suggested Citation

  • Badih Ghattas & Alvaro Sanchez San-Benito, 2025. "Clustering Approaches for Mixed‐Type Data: A Comparative Study," Post-Print hal-05069567, HAL.
  • Handle: RePEc:hal:journl:hal-05069567
    DOI: 10.1155/jpas/2242100
    Note: View the original document on HAL open archive server: https://hal.science/hal-05069567v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-05069567v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1155/jpas/2242100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laurence S. J. Roope, 2019. "Characterizing inequality benchmark incomes," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 131-145, May.
    2. R. Gnanadesikan & J. Kettenring & S. Tsao, 1995. "Weighting and selection of variables for cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 113-136, March.
    3. Philip Hans Franses, 2020. "IMA(1,1) as a new benchmark for forecast evaluation," Applied Economics Letters, Taylor & Francis Journals, vol. 27(17), pages 1419-1423, October.
    4. Christian Hennig & Tim F. Liao, 2013. "How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(3), pages 309-369, May.
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    6. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    7. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    2. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    3. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    4. Andrea Cerasa, 2016. "Combining homogeneous groups of preclassified observations with application to international trade," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 229-259, August.
    5. Volodymyr Melnykov & Xuwen Zhu, 2019. "An extension of the K-means algorithm to clustering skewed data," Computational Statistics, Springer, vol. 34(1), pages 373-394, March.
    6. Zaheer Ahmed & Alberto Cassese & Gerard Breukelen & Jan Schepers, 2023. "E-ReMI: Extended Maximal Interaction Two-mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 298-331, July.
    7. Rocci, Roberto & Vichi, Maurizio, 2008. "Two-mode multi-partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1984-2003, January.
    8. Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
    9. Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
    10. Aghiles Salah & Mohamed Nadif, 2019. "Directional co-clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 591-620, September.
    11. Efthymios Costa & Ioanna Papatsouma & Angelos Markos, 2023. "Benchmarking distance-based partitioning methods for mixed-type data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 701-724, September.
    12. Jonathon J. O’Brien & Michael T. Lawson & Devin K. Schweppe & Bahjat F. Qaqish, 2020. "Suboptimal Comparison of Partitions," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 435-461, July.
    13. Shuchismita Sarkar & Volodymyr Melnykov & Rong Zheng, 2020. "Gaussian mixture modeling and model-based clustering under measurement inconsistency," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 379-413, June.
    14. Tsai, Chieh-Yuan & Chiu, Chuang-Cheng, 2008. "Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4658-4672, June.
    15. Heath, Jeffrey W. & Fu, Michael C. & Jank, Wolfgang, 2009. "New global optimization algorithms for model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3999-4017, October.
    16. Heidorn, Thomas & Schäfer, Niklas, 2020. "Euro-Benchmarkreform - Neue Referenzzinssätze in der Eurozone," Frankfurt School - Working Paper Series 228, Frankfurt School of Finance and Management.
    17. Susan Brudvig & Michael J. Brusco & J. Dennis Cradit, 2019. "Joint selection of variables and clusters: recovering the underlying structure of marketing data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(1), pages 1-12, March.
    18. Xavier Bry & Lionel Cucala, 2022. "A von Mises–Fisher mixture model for clustering numerical and categorical variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 429-455, June.
    19. Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
    20. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05069567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.