IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01995767.html

A Quantum-Type Approach to Non-Life Insurance Risk Modelling

Author

Listed:
  • Claude Lefèvre

    (ULB - Département de Mathématique [Bruxelles] - ULB - Faculté des Sciences [Bruxelles] - ULB - Université libre de Bruxelles = Free University of Brussels)

  • Stéphane Loisel

    (LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Muhsin Tamturk
  • Sergey Utev

    (UON - University of Nottingham, UK)

Abstract

A quantum mechanics approach is proposed to model non-life insurance risks and to compute the future reserve amounts and the ruin probabilities. The claim data, historical or simulated, are treated as coming from quantum observables and analyzed with traditional machine learning tools. They can then be used to forecast the evolution of the reserves of an insurance company. The following methodology relies on the Dirac matrix formalism and the Feynman path-integral method.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Claude Lefèvre & Stéphane Loisel & Muhsin Tamturk & Sergey Utev, 2018. "A Quantum-Type Approach to Non-Life Insurance Risk Modelling," Post-Print hal-01995767, HAL.
  • Handle: RePEc:hal:journl:hal-01995767
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhsin Tamturk & Dominic Cortis & Mark Farrell, 2020. "Examining the Effects of Gradual Catastrophes on Capital Modelling and the Solvency of Insurers: The Case of COVID-19," Risks, MDPI, vol. 8(4), pages 1-13, December.
    2. Tautvydas Kuras & Jonas Sprindys & Jonas Šiaulys, 2020. "Martingale Approach to Derive Lundberg-Type Inequalities," Mathematics, MDPI, vol. 8(10), pages 1-18, October.
    3. Muhsin Tamturk, 2023. "Quantum Computing in Insurance Capital Modelling," Mathematics, MDPI, vol. 11(3), pages 1-13, January.

    More about this item

    JEL classification:

    • C - Mathematical and Quantitative Methods
    • G0 - Financial Economics - - General
    • G1 - Financial Economics - - General Financial Markets
    • G2 - Financial Economics - - Financial Institutions and Services
    • G3 - Financial Economics - - Corporate Finance and Governance
    • M2 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics
    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting
    • K2 - Law and Economics - - Regulation and Business Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01995767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.