IDEAS home Printed from https://ideas.repec.org/p/fpr/2020br/16(3).html
   My bibliography  Save this paper

Reducing methane emissions from irrigated rice:

Author

Listed:
  • Wassmann, Reiner
  • Hosen, Yasukazu
  • Sumfleth, Kay

Abstract

Rice is grown on more than 140 million hectares worldwide and is the most heavily consumed staple food on earth. Ninety percent of the world's rice is produced and consumed in Asia, and 90 percent of rice land is—at least temporarily—flooded. The unique semiaquatic nature of the rice plant allows it to grow productively in places no other crop could exist, but it is also the reason for its emissions of the major greenhouse gas (GHG), methane. Methane emissions from rice fields are determined mainly by water regime and organic inputs, but they are also influenced by soil type, weather, tillage management, residues, fertilizers, and rice cultivar. Flooding of the soil is a prerequisite for sustained emissions of methane. Recent assessments of methane emissions from irrigated rice cultivation estimate global emissions for the year 2000 at a level corresponding to 625 million metric tons (mt) of carbon dioxide equivalent (CO2e). Midseason drainage (a common irrigation practice adopted in major rice growing regions of China and Japan) and intermittent irrigation (common in northwest India) greatly reduce methane emissions. Similarly, rice environments with an insecure supply of water, namely rainfed rice, have a lower emission potential than irrigated rice. Organic inputs stimulate methane emissions as long as fields remain flooded. Therefore, organic inputs should be applied to aerobic soil in an effort to reduce methane emission. In addition to management factors, methane emissions are also affected by soil parameters and climate.

Suggested Citation

  • Wassmann, Reiner & Hosen, Yasukazu & Sumfleth, Kay, 2009. "Reducing methane emissions from irrigated rice:," 2020 vision briefs 16(3), International Food Policy Research Institute (IFPRI).
  • Handle: RePEc:fpr:2020br:16(3)
    as

    Download full text from publisher

    File URL: http://www.ifpri.org/sites/default/files/publications/focus16_03.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Climate change; rice; Agricultural research;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fpr:2020br:16(3). See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ifprius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.