IDEAS home Printed from https://ideas.repec.org/p/fau/wpaper/wp2008_27.html

Modelling Bank Loan LGD of Corporate and SME Segments: A Case Study

Author

Abstract

The aim of this paper is to propose a methodology to estimate loss given default (LGD) and apply it to a set of micro-data of loans to SME and corporations of an anonymous commercial bank from Central Europe. LGD estimates are important inputs in the pricing of credit risk and the measurement of bank profitability and solvency. Basel II Advance IRB Approach requires internally estimates of LGD to calculate risk-weighted assets and to estimate expected loss. We analyse the recovery rate dynamically over time and identify the efficient recovery period of a workout department. Moreover, we focus on the appropriate choice of a discount factor by introducing risk premium based on a risk level of collaterals. We apply statistical methods to estimate LGD and test empirically its determinants. Particularly, we analyse generalised linear models using symmetric logit and asymmetric log-log link functions for ordinal responses as well as for fractional responses. For fractional responses we employ two alternatives, a beta inflated distribution and a quasi-maximum likelihood estimator. We find out that the main drivers of LGD are a relative value of collateral, a loan size as well as a year of the loan origination. Different models provided similar results. As for the different links in more complex models, log-log models in some cases perform better, implying an asymmetric response of the dependent variable.

Suggested Citation

  • Radovan Chalupka & Juraj Kopecsni, 2008. "Modelling Bank Loan LGD of Corporate and SME Segments: A Case Study," Working Papers IES 2008/27, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2008.
  • Handle: RePEc:fau:wpaper:wp2008_27
    as

    Download full text from publisher

    File URL: http://ies.fsv.cuni.cz/default/file/download/id/9308
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaldız Hanedar, Elmas & Broccardo, Eleonora & Bazzana, Flavio, 2014. "Collateral requirements of SMEs: The evidence from less-developed countries," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 106-121.
    2. Jakub Seidler & Petr Jakubík, 2009. "Implied Market Loss Given Default in the Czech Republic: Structural-Model Approach," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(1), pages 20-40, January.
    3. Natalia Nehrebecka, 2019. "Bank loans recovery rate in commercial banks: A case study of non-financial corporations," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 139-172.
    4. Aneta Ptak-Chmielewska & Paweł Kopciuszewski, 2024. "Credit loss modelling using beta distribution in a Bayesian approach," Bank i Kredyt, Narodowy Bank Polski, vol. 55(3), pages 313-332.
    5. Elmas Yaldiz Hanedar & Eleonora Broccardo & Flavio Bazzana, 2012. "Collateral Requirements of SMEs:The Evidence from Less–Developed Countries," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0034, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    6. Raffaella Calabrese, 2012. "Estimating bank loans loss given default by generalized additive models," Working Papers 201224, Geary Institute, University College Dublin.
    7. Tomas Konecny & Jakub Seidler & Aelta Belyaeva & Konstantin Belyaev, 2017. "The Time Dimension of the Links Between Loss Given Default and the Macroeconomy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 67(6), pages 462-491, October.
    8. Yashkir, Olga & Yashkir, Yuriy, 2013. "Loss Given Default Modelling: Comparative Analysis," MPRA Paper 46147, University Library of Munich, Germany.
    9. Radovan Chalupka & Juraj Kopecsni, 2009. "Modeling Bank Loan LGD of Corporate and SME Segments: A Case Study," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(4), pages 360-382, Oktober.
    10. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, March.
    11. Lionel Sopgoui, 2024. "Impact of Climate transition on Credit portfolio's loss with stochastic collateral," Papers 2408.13266, arXiv.org, revised May 2025.
    12. Miller, Patrick & Töws, Eugen, 2018. "Loss given default adjusted workout processes for leases," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 189-201.
    13. Aneta Ptak-Chmielewska & Paweł Kopciuszewski, 2023. "Application of the Bayesian approach in loss given default modelling," Bank i Kredyt, Narodowy Bank Polski, vol. 54(6), pages 625-650.
    14. Yang, Bill Huajian & Tkachenko, Mykola, 2012. "Modeling of EAD and LGD: Empirical Approaches and Technical Implementation," MPRA Paper 57298, University Library of Munich, Germany.
    15. Wojciech Starosta, 2020. "Modelling Recovery Rate for Incomplete Defaults Using Time Varying Predictors," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(2), pages 195-225, June.
    16. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank, Research and Statistics Department.
    17. Han, Chulwoo & Jang, Youngmin, 2013. "Effects of debt collection practices on loss given default," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 21-31.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2008_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.