IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The covariation for Banach space valued processes and applications

This article focuses on a new concept of quadratic variation for processes taking values in a Banach space B and a corresponding covariation. This is more general than the classical one of Métivier and Pellaumail. Those notions are associated with some subspace ? of the dual of the projective tensor product of B with itself. We also introduce the notion of a convolution type process, which is a natural generalization of the Itô process and the concept of ¯V0-semimartingale, which is a natural extension of the classical notion of semimartingale. The framework is the stochastic calculus via regularization in Banach spaces. Two main applications are mentioned: one related to Clark-Ocone formula for finite quadratic variation processes; the second one concerns the probabilistic representation of a Hilbert valued partial differential equation of Kolmogorov type. 2010 Math Subject Classification: 60G22, 60H05, 60H07, 60H15, 60H30, 26E20, 35K90 46G05

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne in its series Documents de recherche with number 13-01.

in new window

Length: 45 pages
Date of creation: Jan 2013
Handle: RePEc:eve:wpaper:13-01
Contact details of provider: Postal:
4, bld Francois Mitterand, 91025 Evry Cedex

Phone: +33 1 69 47 71 77
Fax: +33 1 69 47 70 50
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Russo, Francesco & Tudor, Ciprian A., 2006. "On bifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 830-856, May.
  2. Giorgio FABBRI & Francesco RUSSO, 2012. "Infinite dimensional weak Dirichlet processes, stochastic PDEs and optimal control," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2012017, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  3. Gozzi, Fausto & Russo, Francesco, 2006. "Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1530-1562, November.
  4. Errami, Mohammed & Russo, Francesco, 2003. "n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes," Stochastic Processes and their Applications, Elsevier, vol. 104(2), pages 259-299, April.
  5. Gozzi, Fausto & Russo, Francesco, 2006. "Weak Dirichlet processes with a stochastic control perspective," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1563-1583, November.
  6. Rosanna Coviello & Cristina Di Girolami & Francesco Russo, 2011. "On stochastic calculus related to financial assets without semimartingales," Papers 1102.2050,
  7. Christian Bender & Tommi Sottinen & Esko Valkeila, 2008. "Pricing by hedging and no-arbitrage beyond semimartingales," Finance and Stochastics, Springer, vol. 12(4), pages 441-468, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eve:wpaper:13-01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Samuel Nosel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.