IDEAS home Printed from https://ideas.repec.org/p/eve/wpaper/13-01.html
   My bibliography  Save this paper

The covariation for Banach space valued processes and applications

Author

Abstract

This article focuses on a new concept of quadratic variation for processes taking values in a Banach space B and a corresponding covariation. This is more general than the classical one of Métivier and Pellaumail. Those notions are associated with some subspace ? of the dual of the projective tensor product of B with itself. We also introduce the notion of a convolution type process, which is a natural generalization of the Itô process and the concept of ¯V0-semimartingale, which is a natural extension of the classical notion of semimartingale. The framework is the stochastic calculus via regularization in Banach spaces. Two main applications are mentioned: one related to Clark-Ocone formula for finite quadratic variation processes; the second one concerns the probabilistic representation of a Hilbert valued partial differential equation of Kolmogorov type. 2010 Math Subject Classification: 60G22, 60H05, 60H07, 60H15, 60H30, 26E20, 35K90 46G05

Suggested Citation

  • Cristina Di Girolami & Giorgio Fabbri & Francesco Russo, 2013. "The covariation for Banach space valued processes and applications," Documents de recherche 13-01, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
  • Handle: RePEc:eve:wpaper:13-01
    as

    Download full text from publisher

    File URL: http://epee.univ-evry.fr/RePEc/2013/13-01.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giorgio FABBRI & Francesco RUSSO, 2012. "Infinite dimensional weak Dirichlet processes, stochastic PDEs and optimal control," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2012017, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    2. Gozzi, Fausto & Russo, Francesco, 2006. "Weak Dirichlet processes with a stochastic control perspective," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1563-1583, November.
    3. Rosanna Coviello & Cristina Di Girolami & Francesco Russo, 2011. "On stochastic calculus related to financial assets without semimartingales," Papers 1102.2050, arXiv.org.
    4. Christian Bender & Tommi Sottinen & Esko Valkeila, 2008. "Pricing by hedging and no-arbitrage beyond semimartingales," Finance and Stochastics, Springer, vol. 12(4), pages 441-468, October.
    5. Gozzi, Fausto & Russo, Francesco, 2006. "Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1530-1562, November.
    6. Russo, Francesco & Tudor, Ciprian A., 2006. "On bifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 830-856, May.
    7. Errami, Mohammed & Russo, Francesco, 2003. "n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes," Stochastic Processes and their Applications, Elsevier, vol. 104(2), pages 259-299, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabbri, Giorgio & Russo, Francesco, 2017. "Infinite dimensional weak Dirichlet processes and convolution type processes," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 325-357.
    2. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    3. repec:eee:spapps:v:127:y:2017:i:12:p:4139-4189 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eve:wpaper:13-01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Samuel Nosel). General contact details of provider: http://edirc.repec.org/data/epevrfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.