IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/127875.html
   My bibliography  Save this paper

Nonresponse adjustment using auxiliary variables subject themselves to missing data

Author

Listed:
  • Skinner, Chris
  • Lawson, Nuanpan

Abstract

Nonresponse is a significant matter that cannot be denied in a sample survey. Declining response rates lead to increasing nonresponse bias which affects the estimated bias. Nonresponse adjustment can be used to deal with unit nonresponse by using nonresponse weight. Two possible models in which missingness in an ancillary database may be correlated with missingness in a survey are considered in this study for estimating the population mean when nonresponse occurs on both the study and auxiliary variables. Two auxiliary variables where one auxiliary variable is fully observed and some part of the other is missing are considered in the possible models. Simulation studies are carried on to see how the nonresponse adjustment using auxiliary variables that subject themselves to nonresponse work under the possible models. The simulation results show that the weighted mean performed the best in removing the bias and gave the minimum mean square error compared to the unweighted mean which was affected by nonresponse.

Suggested Citation

  • Skinner, Chris & Lawson, Nuanpan, 2025. "Nonresponse adjustment using auxiliary variables subject themselves to missing data," LSE Research Online Documents on Economics 127875, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:127875
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/127875/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:mpr:mprres:4937 is not listed on IDEAS
    2. Nuanpan Lawson & Chris Skinner, 2017. "Estimation of a cluster-level regression model under nonresponse within clusters," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 319-331, December.
    3. Ted Chang & Phillip S. Kott, 2008. "Using calibration weighting to adjust for nonresponse under a plausible model," Biometrika, Biometrika Trust, vol. 95(3), pages 555-571.
    4. Brady T. West & Roderick J. A. Little, 2013. "Non-response adjustment of survey estimates based on auxiliary variables subject to error," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(2), pages 213-231, March.
    5. repec:mpr:mprres:4780 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachary H. Seeskin, 2016. "Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes," CARRA Working Papers 2016-06, Center for Economic Studies, U.S. Census Bureau.
    2. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    3. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    4. Alexandra Filindra & Melanie Kolbe, 2022. "Latinx identification with whiteness: What drives it, and what effects does it have on political preferences?," Social Science Quarterly, Southwestern Social Science Association, vol. 103(6), pages 1424-1439, November.
    5. Kott Phillip S. & Liao Dan, 2018. "Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)," Journal of Official Statistics, Sciendo, vol. 34(1), pages 107-120, March.
    6. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    7. M. Giovanna Ranalli & Alina Matei & Andrea Neri, 2023. "Generalised calibration with latent variables for the treatment of unit nonresponse in sample surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 169-195, March.
    8. Christopher Foote & Tyler Hounshell & William D. Nordhaus & Douglas Rivers & Pamela Torola, 2021. "Measuring the U.S. Employment Situation Using Online Panels: The Yale Labor Survey," Cowles Foundation Discussion Papers 2282, Cowles Foundation for Research in Economics, Yale University.
    9. Chipperfield James & Brown James & Bell Philip, 2017. "Estimating the Count Error in the Australian Census," Journal of Official Statistics, Sciendo, vol. 33(1), pages 43-59, March.
    10. Gonzalez Jeffrey M. & Eltinge John L., 2016. "Discussion," Journal of Official Statistics, Sciendo, vol. 32(2), pages 295-300, June.
    11. Christopher Henry & Kim Huynh & Gradon Nicholls & Mitchell Nicholson, 2019. "2018 Bitcoin Omnibus Survey: Awareness and Usage," Discussion Papers 2019-10, Bank of Canada.
    12. Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 183-200, June.
    13. Christopher Foote & William D. Nordhaus & Douglas Rivers, 2020. "The US Employment Situation Using the Yale Labor Survey," Cowles Foundation Discussion Papers 2243, Cowles Foundation for Research in Economics, Yale University.
    14. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    15. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
    16. Shukla Alok Kumar & Yadav Subhash Kumar, 2020. "New linear model for optimal cluster size in cluster sampling," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 189-200, June.
    17. Maria Michela Dickson & Giuseppe Espa & Lorenzo Fattorini & Flavio Santi, 2022. "Double-calibration estimators accounting for under-coverage and nonresponse in socio-economic surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1273-1288, December.
    18. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    19. Williams Matthew & Berg Emily, 2013. "Incorporating User Input Into Optimal Constraining Procedures for Survey Estimates," Journal of Official Statistics, Sciendo, vol. 29(3), pages 375-396, June.
    20. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.

    More about this item

    Keywords

    nonresponse adjustment; missing data; propensity score weights; logistic regression; auxiliary variables; bias; mean square error;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:127875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.