IDEAS home Printed from
   My bibliography  Save this paper

Smooth Test Of Density Forecast Evaluation With Independent And Serially Dependent Data


  • Aurobindo Ghosh
  • Anil K. Bera


Recently financial econometricians have shifted their attention from point and interval forecasts to density forecasts mainly to address the issue of the huge loss of information that results from depicting portfolio risk by a measure of dispersion alone. One of the major problems in this area has been the evaluation of the quality of different density forecasts. In this paper, we propose an analytical test for density forecast evaluation using Neyman (1937) smooth test procedure for both independent and serially dependent data. Apart from indicating the acceptance or rejection of the hypothesized model, this approach provides specific sources (such as the mean, variance, skewness and kurtosis or the location, scale and shape of the distribution or types of dependence) of departure, thereby helping in deciding possible modifications of the assumed forecast model. We also address the issue of where to split the sample into in-sample (estimation sample) and out-of-sample (testing sample) observations in order to evaluate the “goodness-of-fit†of the forecasting model both analytically, as well as through simulation exercises. Monte Carlo studies revealed that the proposed test has good size and power properties; finite sample properties of this test favorably compare with existing Goodness-of-Fit tests in statistics literature. We further investigate applications to value weighted S&P 500 returns that initially indicates that introduction of a conditional heteroscedasticity model significantly improve the model over one with constant conditional variance. The simplicity of the proposed test based on the classical score test will particularly appealling because it not only tests the assumed model but also directs to a better model if the assumed one is not valid.

Suggested Citation

  • Aurobindo Ghosh & Anil K. Bera, 2004. "Smooth Test Of Density Forecast Evaluation With Independent And Serially Dependent Data," Econometric Society 2004 North American Summer Meetings 319, Econometric Society.
  • Handle: RePEc:ecm:nasm04:319

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Score Test; Density Forecast Evaluation; Probability Integral Transform; Goodness-of-Fit test; Serially Dependent Data; Simulation methods;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:319. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.