IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

On Distribution and Quantile Functions, Ranks and Signs in R_d

Listed author(s):
  • Marc Hallin

Unlike the real line, the d-dimensional space Rd, for d ≥ 2, is not canonically ordered. As a consequence, such fundamental and strongly order-related univariate concepts as quantile and distribution functions, and their empirical counterparts, involving ranks and signs, do not canonically extend to the multivariate context. Palliating that lack of a canonical ordering has remained an open problem for more than half a century, and has generated an abundant literature, motivating, among others, the development of statistical depth and copula-based methods. We show here that, unlike the many definitions that have been proposed in the literature, the measure transportation-based ones introduced in Chernozhukov et al. (2017) enjoy all the properties (distribution-freeness and preservation of semiparametric efficiency) that make univariate quantiles and ranks successful tools for semiparametric statistical inference. We therefore propose a new center-outward definition of multivariate distribution and quantile functions, along with their empirical counterparts, for which we establish a Glivenko-Cantelli result. Our approach, based on results by McCann (1995), is geometric rather than analytical and, contrary to the Monge-Kantorovich one in Chernozhukov et al. (2017) (which assumes compact supports or finite second-order moments), does not require any moment assumptions. The resulting ranks and signs are shown to be strictly distribution-free, and maximal invariant under the action of transformations (namely, the gradients of convex functions, which thus are playing the role of order-preserving transformations) generating the family of absolutely continuous distributions; this, in view of a general result by Hallin and Werker (2003), implies preservation of semiparametric efficiency. The resulting quantiles are equivariant under the same transformations, which confirms the order-preserving nature of gradients of convex function.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/258262/3/2017-34-HALLIN-ondistribution.pdf
File Function: Full text for the whole work, or for a work part
Download Restriction: no

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number ECARES 2017-34.

as
in new window

Length: 30 p.
Date of creation: Sep 2017
Publication status: Published by:
Handle: RePEc:eca:wpaper:2013/258262
Contact details of provider: Postal:
Av. F.D., Roosevelt, 39, 1050 Bruxelles

Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/258262. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.