IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Improving forecasting performance by window and model averaging

Listed author(s):
  • Prasad S Bhattacharya

    ()

  • Dimitrios D Thomakos

    ()

This study presents extensive results on the benefits of rolling window and model averaging. Building on the recent work on rolling window averaging by Pesaran et al (2010, 2009) and on exchange rate forecasting by Molodtsova and Papell (2009), we explore whether rolling window averaging can be considered beneficial on a priori grounds. We investigate whether rolling window averaging can improve the performance of model averaging, especially when ‘simpler’ models are used. The analysis provides strong support for rolling window averaging, outperforming the best window forecasts more than 50% of the time across all rolling windows. Furthermore, rolling window averaging smoothes out the forecast path, improves robustness, and minimizes the pitfalls associated with potential structural breaks.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.deakin.edu.au/buslaw/aef/workingpapers/papers/2011_1.pdf
Download Restriction: no

Paper provided by Deakin University, Faculty of Business and Law, School of Accounting, Economics and Finance in its series Economics Series with number 2011_1.

as
in new window

Length:
Date of creation: 21 Feb 2011
Handle: RePEc:dkn:econwp:eco_2011_1
Contact details of provider: Postal:
221 Burwood Highway, Burwood 3125

Phone: 61 3 9244 3815
Fax: +61 3 5227 2655
Web page: http://www.deakin.edu.au/buslaw/aef/index.php
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
  2. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, 06.
  3. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
  4. Yin-Wong Cheung & Antonio Garcia Pascual & Menzie David Chinn, 2004. "Empirical Exchange Rate Models of the Nineties; Are Any Fit to Survive?," IMF Working Papers 04/73, .
  5. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  6. Todd E. Clark & Kenneth D. West, 2004. "Using out-of-sample mean squared prediction errors to test the Martingale difference hypothesis," Research Working Paper RWP 04-03, Federal Reserve Bank of Kansas City.
  7. Engel, Charles & West, Kenneth D., 2003. "Exchange rates and fundamentals," Working Paper Series 0248, European Central Bank.
  8. Todd E. Clark & Michael W. McCracken, 2008. "Averaging forecasts from VARs with uncertain instabilities," Working Papers 2008-030, Federal Reserve Bank of St. Louis.
  9. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
  10. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 642-675, October.
  11. Andrew Ang & Geert Bekaert & Min Wei, 2006. "Do macro variables, asset markets, or surveys forecast inflation better?," Finance and Economics Discussion Series 2006-15, Board of Governors of the Federal Reserve System (U.S.).
  12. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, December.
  13. Elliott, Graham & Timmermann, Allan G, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.
  14. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  15. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  16. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
  17. Todd E. Clark & Michael W. McCracken, 2004. "Improving forecast accuracy by combining recursive and rolling forecasts," Research Working Paper RWP 04-10, Federal Reserve Bank of Kansas City.
  18. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Rejoinder to comments on forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 703-715, October.
  19. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  20. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
  21. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
  22. Mark, Nelson C. & Sul, Donggyu, 2001. "Nominal exchange rates and monetary fundamentals: Evidence from a small post-Bretton woods panel," Journal of International Economics, Elsevier, vol. 53(1), pages 29-52, February.
  23. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  24. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
  25. George Athanasopoulos & Farshid Vahid, 2006. "VARMA versus VAR for Macroeconomic Forecasting," Monash Econometrics and Business Statistics Working Papers 4/06, Monash University, Department of Econometrics and Business Statistics.
  26. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  27. Rapach, David E. & Wohar, Mark E., 2002. "Testing the monetary model of exchange rate determination: new evidence from a century of data," Journal of International Economics, Elsevier, vol. 58(2), pages 359-385, December.
  28. Groen, Jan J J, 2005. "Exchange Rate Predictability and Monetary Fundamentals in a Small Multi-country Panel," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 495-516, June.
  29. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
  30. Katrin Assenmacher-Wesche & M. Hashem Pesaran, 2008. "Forecasting the Swiss Economy Using VECX* Models: An Exercise in Forecast Combination Across Modelsand Observation Windows," Working Papers 2008-03, Swiss National Bank.
  31. Katrin Assenmacher-Wesche & M. Hashem Pesaran, 2008. "Forecasting the Swiss economy using VECX models: An exercise in forecast combination across models and observation windows," National Institute Economic Review, National Institute of Economic and Social Research, vol. 203(1), pages 91-108, January.
  32. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
  33. Papell, David H., 2006. "The Panel Purchasing Power Parity Puzzle," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(2), pages 447-467, March.
  34. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
  35. Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:dkn:econwp:eco_2011_1. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xueli Tang)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.