IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1865r.html
   My bibliography  Save this paper

Notes on Computational Complexity of GE Inequalities

Author

Abstract

This paper is a revision of my paper, CFDP 1865. The principal innovation is an equivalent reformulation of the decision problem for weak feasibility of the GE inequalities, using polynomial time ellipsoid methods, as a semidefinite optimization problem, using polynomial time interior point methods. We minimize the maximum of the Euclidean distances between the aggregate endowment and the Minkowski sum of the sets of consumer's Marshallian demands in each observation. We show that this is an instance of the generic semidefinite optimization problem: inf_{x in K}f(x) equivalent to Opt(K,f), the optimal value of the program, where the convex feasible set K and the convex objective function f(x) have semidefinite representations. This problem can be approximately solved in polynomial time. That is, if p(K,x) is a convex measure of infeasibilty, where for all x, p(K,x) >= 0 and p(K,z) = 0 iff z in K, then for every epsilon > 0 there exists an epsilon-optimal y such that p(K,y)

Suggested Citation

  • Donald J. Brown, 2012. "Notes on Computational Complexity of GE Inequalities," Cowles Foundation Discussion Papers 1865R, Cowles Foundation for Research in Economics, Yale University, revised Aug 2012.
  • Handle: RePEc:cwl:cwldpp:1865r
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d18/d1865-r.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cherchye, Laurens & Demuynck, Thomas & De Rock, Bram, 2011. "Testable implications of general equilibrium models: An integer programming approach," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 564-575.
    2. Donald J. Brown & Chris Shannon, 2000. "Uniqueness, Stability, and Comparative Statics in Rationalizable Walrasian Markets," Econometrica, Econometric Society, vol. 68(6), pages 1529-1540, November.
    3. Brown, Donald J & Matzkin, Rosa L, 1996. "Testable Restrictions on the Equilibrium Manifold," Econometrica, Econometric Society, vol. 64(6), pages 1249-1262, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    GE Inequalities; Polynomial solvability; Semidefinite Programming;

    JEL classification:

    • D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1865r. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.