IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2017-69.html
   My bibliography  Save this paper

A note on the adaptive estimation of the di?erential entropy by wavelet methods

Author

Listed:
  • Christophe Chesneau

    (Université de Caen; LMNO)

  • Fabien Navarro

    (CREST;ENSAI)

  • Oana Silvia Serea

    (Université Perpignan; Laboratoire de Mathématiques et Physique)

Abstract

In this note we consider the estimation of the di?erential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean Lp error, p = 1, this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical ?ndings.

Suggested Citation

  • Christophe Chesneau & Fabien Navarro & Oana Silvia Serea, 2017. "A note on the adaptive estimation of the di?erential entropy by wavelet methods," Working Papers 2017-69, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2017-69
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2017-69.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harry Joe, 1989. "Estimation of entropy and other functionals of a multivariate density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(4), pages 683-697, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
    2. Mariano Matilla‐García & José Miguel Rodríguez & Manuel Ruiz Marín, 2010. "A symbolic test for testing independence between time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 76-85, March.
    3. Kojadinovic, Ivan, 2005. "Relevance measures for subset variable selection in regression problems based on k-additive mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1205-1227, June.
    4. López, Fernando & Matilla-García, Mariano & Mur, Jesús & Marín, Manuel Ruiz, 2010. "A non-parametric spatial independence test using symbolic entropy," Regional Science and Urban Economics, Elsevier, vol. 40(2-3), pages 106-115, May.
    5. Ao Yuan, 2009. "Semiparametric inference with kernel likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 207-228.
    6. Hino, Hideitsu & Koshijima, Kensuke & Murata, Noboru, 2015. "Non-parametric entropy estimators based on simple linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 72-84.
    7. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    8. Amato, Federico & Laib, Mohamed & Guignard, Fabian & Kanevski, Mikhail, 2020. "Analysis of air pollution time series using complexity-invariant distance and information measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    9. Marrelec, Guillaume & Giron, Alain & Messio, Laura, 2021. "Exponential decay of pairwise correlation in Gaussian graphical models with an equicorrelational one-dimensional connection pattern," Statistics & Probability Letters, Elsevier, vol. 171(C).
    10. Kojadinovic, Ivan, 2004. "Agglomerative hierarchical clustering of continuous variables based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 269-294, June.
    11. Herrera Gómez, Marcos & Ruiz Marín, Manuel & Mur Lacambra, Jesús & Paelinck, Jean, 2010. "A Non-Parametric Approach to Spatial Causality," MPRA Paper 36768, University Library of Munich, Germany.
    12. Ashis K. Gangopadhyay & Robert disario & Dipak K. Dey, 1997. "A nonparametric approach to k-sample inference based on entropy-super-," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 237-252, September.
    13. Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
    14. Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
    15. Virginia Lacal & Dag TjØstheim, 2017. "Local Gaussian Autocorrelation and Tests for Serial Independence," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 51-71, January.
    16. Beknazaryan, Aleksandr & Dang, Xin & Sang, Hailin, 2019. "On mutual information estimation for mixed-pair random variables," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 9-16.
    17. Jan G. De Gooijer & Ao Yuan, 2008. "MDL Mean Function Selection in Semiparametric Kernel Regression Models," Tinbergen Institute Discussion Papers 08-046/4, Tinbergen Institute.
    18. Herrera Gómez, Marcos, 2010. "Causalidad Espacial. Enfoque No Paramétrico [Spatial Causality. Non-Parametric Approach]," MPRA Paper 61326, University Library of Munich, Germany.

    More about this item

    Keywords

    Entropy; Wavelet estimation; Rate of convergence; Mean Lp error;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2017-69. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.