IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/16084.html
   My bibliography  Save this paper

Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization

Author

Listed:
  • Duflo, Esther
  • Banerjee, Abhijit
  • Floretta, John
  • Schrimpf, Anna
  • Sankar, Anirudh
  • Loza, Francine
  • Kannan, Harini
  • Jackson, Matthew O.
  • Chandrasekhar, Arun G.
  • Shrestha, Maheshwor
  • Dalpath, Suresh

Abstract

We evaluate a large-scale set of interventions to increase demand for immunization in Haryana, India. The policies under consideration include the two most frequently discussed tools—reminders and incentives—as well as an intervention inspired by the networks literature. We cross-randomize whether (a) individuals receive SMS reminders about upcoming vaccination drives; (b) individuals receive incentives for vaccinating their children; (c) influential individuals (information hubs, trusted individuals, or both) are asked to act as “ambassadors†receiving regular reminders to spread the word about immunization in their community. By taking into account different versions (or “dosages†) of each intervention, we obtain 75 unique policy combinations. We develop a new statistical technique—a smart pooling and pruning procedure—for finding a best policy from a large set, which also determines which policies are effective and the effect of the best policy. We proceed in two steps. First, we use a LASSO technique to collapse the data: we pool dosages of the same treatment if the data cannot reject that they had the same impact, and prune policies deemed ineffective. Second, using the remaining (pooled) policies, we estimate the effect of the best policy, accounting for the winner’s curse. The key outcomes are (i) the number of measles immunizations and (ii) the number of immunizations per dollar spent. The policy that has the largest impact (information hubs, SMS reminders, incentives that increase with each immunization) increases the number of immunizations by 44 % relative to the status quo. The most cost-effective policy (information hubs, SMS reminders, no incentives) increases the number of immunizations per dollar by 9.1%.

Suggested Citation

  • Duflo, Esther & Banerjee, Abhijit & Floretta, John & Schrimpf, Anna & Sankar, Anirudh & Loza, Francine & Kannan, Harini & Jackson, Matthew O. & Chandrasekhar, Arun G. & Shrestha, Maheshwor & Dalpath, , 2021. "Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization," CEPR Discussion Papers 16084, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:16084
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP16084
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hinz, Oliver & Skiera, Bernd & Barrot, Christian & Becker, Jan, 2011. "Seeding Strategies for Viral Marketing: An Empirical Comparison," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56543, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialing (Catherine) Lin & Zhimin Zhou & Fucheng Zheng & Xinru Jiang & Ninh Nguyen, 2023. "How do hotel star ratings affect the relationship between environmental CSR and green word‐of‐mouth?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2651-2663, September.
    2. Qing Liu & Hosung Son & Woon-Seek Lee, 2024. "The game of lies by stock investors in social media: a study based on city lockdowns in China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-37, December.
    3. Irina Heimbach & Oliver Hinz, 2018. "The Impact of Sharing Mechanism Design on Content Sharing in Online Social Networks," Information Systems Research, INFORMS, vol. 29(3), pages 592-611, September.
    4. Artur Karczmarczyk & Jarosław Jankowski & Jarosław Wątróbski, 2018. "Multi-criteria decision support for planning and evaluation of performance of viral marketing campaigns in social networks," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-32, December.
    5. Inyoung Chae & Andrew T. Stephen & Yakov Bart & Dai Yao, 2017. "Spillover Effects in Seeded Word-of-Mouth Marketing Campaigns," Marketing Science, INFORMS, vol. 36(1), pages 89-104, January.
    6. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    7. Jean J. Gabszewicz & Marco A. Marini & Skerdilajda Zanaj, 2023. "Random encounters and information diffusion about product quality," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 32(2), pages 348-376, April.
    8. Meyners, Jannik & Barrot, Christian & Becker, Jan U. & Bodapati, Anand V., 2017. "Reward-scrounging in customer referral programs," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 382-398.
    9. Tavasoli, Ali & Shakeri, Heman & Ardjmand, Ehsan & Young, William A., 2021. "Incentive rate determination in viral marketing," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1169-1187.
    10. Vincent Leon & S. Rasoul Etesami & Rakesh Nagi, 2022. "Limited-Trust in Diffusion of Competing Alternatives over Social Networks," Papers 2206.06318, arXiv.org, revised Oct 2023.
    11. Hofstetter, Reto & Gollnhofer, Johanna Franziska, 2024. "The creator’s dilemma: Resolving tensions between authenticity and monetization in social media," International Journal of Research in Marketing, Elsevier, vol. 41(3), pages 427-435.
    12. Li, Pengdeng & Yang, Xiaofan & Yang, Lu-Xing & Xiong, Qingyu & Wu, Yingbo & Tang, Yuan Yan, 2018. "The modeling and analysis of the word-of-mouth marketing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 1-16.
    13. Alireza Mansouri & Fattaneh Taghiyareh, 2020. "Phase Transition in the Social Impact Model of Opinion Formation in Scale-Free Networks: The Social Power Effect," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-3.
    14. Eelen, Jiska & Özturan, Peren & Verlegh, Peeter W.J., 2017. "The differential impact of brand loyalty on traditional and online word of mouth: The moderating roles of self-brand connection and the desire to help the brand," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 872-891.
    15. Benevento, Elisabetta & Aloini, Davide & Roma, Paolo & Bellino, Davide, 2025. "The impact of influencers on brand social network growth: Insights from new product launch events on Twitter," Journal of Business Research, Elsevier, vol. 189(C).
    16. Hinz, Oliver & Schulze, Christian & Takac, Carsten, 2014. "New product adoption in social networks: Why direction matters," Journal of Business Research, Elsevier, vol. 67(1), pages 2836-2844.
    17. Thomas Fandrich & Christian Barrot & Jan U. Becker, 2014. "Deckungsbeitragsorientierte Steuerung von Targeting-Kampagnen," Schmalenbach Journal of Business Research, Springer, vol. 66(7), pages 601-624, November.
    18. Pescher, Christian & Spann, Martin, 2014. "Relevance of actors in bridging positions for product-related information diffusion," Journal of Business Research, Elsevier, vol. 67(8), pages 1630-1637.
    19. Jing Peng & Christophe Van den Bulte, 2024. "Participation vs. Effectiveness in Sponsored Tweet Campaigns: A Quality-Quantity Conundrum," Management Science, INFORMS, vol. 70(11), pages 7961-7983, November.
    20. Xi Chen & Ralf van der Lans & Michael Trusov, 2021. "Efficient Estimation of Network Games of Incomplete Information: Application to Large Online Social Networks," Management Science, INFORMS, vol. 67(12), pages 7575-7598, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • I15 - Health, Education, and Welfare - - Health - - - Health and Economic Development
    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:16084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.