IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/16084.html
   My bibliography  Save this paper

Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization

Author

Listed:
  • Duflo, Esther
  • Banerjee, Abhijit
  • Floretta, John
  • Schrimpf, Anna
  • Sankar, Anirudh
  • Loza, Francine
  • Kannan, Harini
  • Jackson, Matthew O.
  • Chandrasekhar, Arun G.
  • Shrestha, Maheshwor
  • Dalpath, Suresh

Abstract

We evaluate a large-scale set of interventions to increase demand for immunization in Haryana, India. The policies under consideration include the two most frequently discussed tools—reminders and incentives—as well as an intervention inspired by the networks literature. We cross-randomize whether (a) individuals receive SMS reminders about upcoming vaccination drives; (b) individuals receive incentives for vaccinating their children; (c) influential individuals (information hubs, trusted individuals, or both) are asked to act as “ambassadors†receiving regular reminders to spread the word about immunization in their community. By taking into account different versions (or “dosages†) of each intervention, we obtain 75 unique policy combinations. We develop a new statistical technique—a smart pooling and pruning procedure—for finding a best policy from a large set, which also determines which policies are effective and the effect of the best policy. We proceed in two steps. First, we use a LASSO technique to collapse the data: we pool dosages of the same treatment if the data cannot reject that they had the same impact, and prune policies deemed ineffective. Second, using the remaining (pooled) policies, we estimate the effect of the best policy, accounting for the winner’s curse. The key outcomes are (i) the number of measles immunizations and (ii) the number of immunizations per dollar spent. The policy that has the largest impact (information hubs, SMS reminders, incentives that increase with each immunization) increases the number of immunizations by 44 % relative to the status quo. The most cost-effective policy (information hubs, SMS reminders, no incentives) increases the number of immunizations per dollar by 9.1%.

Suggested Citation

  • Duflo, Esther & Banerjee, Abhijit & Floretta, John & Schrimpf, Anna & Sankar, Anirudh & Loza, Francine & Kannan, Harini & Jackson, Matthew O. & Chandrasekhar, Arun G. & Shrestha, Maheshwor & Dalpath, , 2021. "Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization," CEPR Discussion Papers 16084, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:16084
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP16084
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zhao, Meng & Kulasekera, K.B., 2006. "Consistent linear model selection," Statistics & Probability Letters, Elsevier, vol. 76(5), pages 520-530, March.
    2. Hinz, Oliver & Skiera, Bernd & Barrot, Christian & Becker, Jan, 2011. "Seeding Strategies for Viral Marketing: An Empirical Comparison," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56543, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Abhijit Banerjee & Arun G Chandrasekhar & Esther Duflo & Matthew O Jackson, 2019. "Using Gossips to Spread Information: Theory and Evidence from Two Randomized Controlled Trials," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(6), pages 2453-2490.
    4. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    5. Adam McCloskey, 2020. "Asymptotically Uniform Tests After Consistent Model Selection in the Linear Regression Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 810-825, October.
    6. Karthik Muralidharan & Mauricio Romero & Kaspar Wüthrich, 2025. "Factorial Designs, Model Selection, and (Incorrect) Inference in Randomized Experiments," The Review of Economics and Statistics, MIT Press, vol. 107(3), pages 589-604, May.
    7. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    8. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    2. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    4. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    6. Philipp Ketz & Adam McCloskey, 2025. "Short and Simple Confidence Intervals When the Directions of Some Effects are Known," The Review of Economics and Statistics, MIT Press, vol. 107(3), pages 820-834, May.
    7. Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
    8. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, The University of Osaka, revised Mar 2020.
    9. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    10. Oliver Dukes & Vahe Avagyan & Stijn Vansteelandt, 2020. "Doubly robust tests of exposure effects under high‐dimensional confounding," Biometrics, The International Biometric Society, vol. 76(4), pages 1190-1200, December.
    11. Xiduo Chen & Xingdong Feng & Antonio F. Galvao & Yeheng Ge, 2025. "Treatment Effects Inference with High-Dimensional Instruments and Control Variables," Papers 2503.20149, arXiv.org, revised Oct 2025.
    12. Sarah Gelper & Ralf van der Lans & Gerrit van Bruggen, 2021. "Competition for Attention in Online Social Networks: Implications for Seeding Strategies," Management Science, INFORMS, vol. 67(2), pages 1026-1047, February.
    13. Timothy B. Armstrong & Michal Kolesár & Soonwoo Kwon, 2020. "Bias-Aware Inference in Regularized Regression Models," Working Papers 2020-2, Princeton University. Economics Department..
    14. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    15. Alex Chin & Dean Eckles & Johan Ugander, 2022. "Evaluating Stochastic Seeding Strategies in Networks," Management Science, INFORMS, vol. 68(3), pages 1714-1736, March.
    16. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    17. Yanqin Fan & Fang Han & Wei Li & Xiao-Hua Zhou, 2019. "On rank estimators in increasing dimensions," Papers 1908.05255, arXiv.org.
    18. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 70/13, Institute for Fiscal Studies.
    19. Doko Tchatoka, Firmin & Wang, Wenjie, 2024. "Weak-Identification-Robust Bootstrap Tests after Pretesting for Exogeneity," MPRA Paper 123060, University Library of Munich, Germany.
    20. Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • I15 - Health, Education, and Welfare - - Health - - - Health and Economic Development
    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:16084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.