IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Incomplete Information Games and the Normal Distribution

Listed author(s):
  • MERTENS, Jean-François


    (CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium)

  • ZAMIR, Shmuel

    (The Hebrew University, Jerusalem, Israel)

We consider a repeated two-person zero-sum game in which the payoffs in the stage game are given by a 2 x 2 matrix. This is chosen (once) by chance, at the beginning of the game, to be either G1 or G2, with probabilities p and 1 - p respectively. The maximiser is informed of the actual payoff matrix chosen but the minimiser is not. Denote by vn(p) the value of the n -times repeated game (with the payoff function defined as the average payoff per stage), and by Voo (p) the value of the infinitely repeated game. It is proved that vn(p) = voo(p) + K(p) ( Ø(p) / [square root] n) + o ( 1/ [square root] n) where Ø(p) is an appropriately scaled normal distribution density function evaluated at its p -quantile, and the coefficient K (p) is either 0 or the absolute value of a linear function in p.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 1995020.

in new window

Date of creation: 01 Mar 1995
Handle: RePEc:cor:louvco:1995020
Contact details of provider: Postal:
Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)

Phone: 32(10)474321
Fax: +32 10474304
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1995020. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.