IDEAS home Printed from https://ideas.repec.org/p/cir/cirpro/2025rp-19.html
   My bibliography  Save this paper

Modèles de volatilité stochastique à haute dimension: applications à l’incertitude macroéconomique au Québec et au Canada

Author

Listed:
  • MD Nazmul Ahsan
  • Jean-Marie Dufour
  • Gabriel Rodriguez

Abstract

Stochastic covariances are critical for macroeconomic and financial modelling, particularly in capturing uncertainty and dynamic interdependencies. This study introduces the Dynamic Factor Augmented VAR with Higher-order Multivariate Stochastic Volatility (DFAVAR-HMSV) framework, along with a computationally efficient estimation methodology. The proposed model captures complex dynamic interdependencies, leverage effects, and higher-order persistence in volatility structures. Applying this framework to construct uncertainty indices for Canada and Québec, the study provides critical insights into regional and national macroeconomic dynamics. Les covariances stochastiques sont essentielles pour la modélisation macroéconomique et financière, en particulier pour capturer l’incertitude et les interdépendances dynamiques. Cette étude introduit le cadre VAR avec facteurs dynamiques et volatilité multivariée stochastique d’ordre supérieur (DFAVAR-HMSV) et propose une méthodologie d’estimation computationnellement efficace. Le modèle proposé capture des interdépendances dynamiques complexes, des effets de levier et une persistance d’ordre supérieur dans les structures de volatilité. En appliquant ce cadre à la construction des indices d’incertitude pour le Canada et le Québec, cette étude fournit des informations critiques sur les dynamiques macroéconomiques régionales et nationales.

Suggested Citation

  • MD Nazmul Ahsan & Jean-Marie Dufour & Gabriel Rodriguez, 2025. "Modèles de volatilité stochastique à haute dimension: applications à l’incertitude macroéconomique au Québec et au Canada," CIRANO Project Reports 2025rp-19, CIRANO.
  • Handle: RePEc:cir:cirpro:2025rp-19
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2025RP-19.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirpro:2025rp-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.