IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf407.html
   My bibliography  Save this paper

Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach

Author

Listed:
  • Elisa Alos

    (Dpt. d'Economia i Empresa)

  • Kenichiro Shiraya

    (Graduate School of Ecnonomics, The University of Tokyo)

Abstract

This paper is devoted to studying the difference between the fair strike of a volatility swap and the at-the-money implied volatility (ATMI) of a European call option. It is well-known that the difference between these two quantities converges to zero as the time to maturity decreases. In this paper, we make use of a Malliavin calculus approach to derive an exact expression for this difference. This representation allows us to establish that the order of the convergence is different in the correlated and in the uncorrelated case, and that it depends on the behavior of the Malliavin derivative of the volatility process. In particular, we will see that for volatilities driven by a fractional Brownian motion, this order depends on the corresponding Hurst parameter H. Moreover, in the case H ≥ 1/2, we develop a model-free approximation formula for the volatility swap, in terms of the ATMI and its skew. (This is a pre-print of an article published in Finance and Stochastics. The final authenticated version is available online at: https://doi.org/10.1007/s00780-019-00384-5)

Suggested Citation

  • Elisa Alos & Kenichiro Shiraya, 2017. "Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach," CARF F-Series CARF-F-407, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Nov 2018.
  • Handle: RePEc:cfi:fseres:cf407
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/F407.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    2. Peter Friz & Jim Gatheral, 2005. "Valuation of volatility derivatives as an inverse problem," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 531-542.
    3. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    4. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    5. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    6. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    7. Masaaki Fukasawa, 2014. "Volatility Derivatives And Model-Free Implied Leverage," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-23.
    8. Elisa Alòs, 2006. "A generalization of the Hull and White formula with applications to option pricing approximation," Finance and Stochastics, Springer, vol. 10(3), pages 353-365, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Al`os & David Garc'ia-Lorite & Aitor Muguruza, 2018. "On smile properties of volatility derivatives and exotic products: understanding the VIX skew," Papers 1808.03610, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Alòs & Kenichiro Shiraya, 2019. "Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach," Finance and Stochastics, Springer, vol. 23(2), pages 423-447, April.
    2. Hideharu Funahashi, 2017. "Pricing derivatives with fractional volatility," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-28, March.
    3. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    4. Martin Forde & Hongzhong Zhang, 2016. "Asymptotics for rough stochastic volatility models," Papers 1610.08878, arXiv.org, revised Mar 2021.
    5. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
    6. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2018. "Hierarchical adaptive sparse grids and quasi Monte Carlo for option pricing under the rough Bergomi model," Papers 1812.08533, arXiv.org, revised Jan 2020.
    7. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    9. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    10. Huy N. Chau & Miklos Rasonyi, 2016. "On optimal investment with processes of long or negative memory," Papers 1608.00768, arXiv.org, revised Mar 2017.
    11. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    12. Elisa Alòs & Michael Coulon, 2024. "On the Optimal Choice of Strike Conventions in Exchange Option Pricing," Mathematics, MDPI, vol. 12(19), pages 1-19, September.
    13. Chau, Huy N. & Rásonyi, Miklós, 2018. "On optimal investment with processes of long or negative memory," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1095-1113.
    14. Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
    15. Archil Gulisashvili, 2017. "Large deviation principle for Volterra type fractional stochastic volatility models," Papers 1710.10711, arXiv.org, revised Aug 2018.
    16. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    17. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    18. Horvath, Blanka & Jacquier, Antoine & Muguruza, Aitor & Søjmark, Andreas, 2024. "Functional central limit theorems for rough volatility," LSE Research Online Documents on Economics 122848, London School of Economics and Political Science, LSE Library.
    19. Elisa Al`os & Michael Coulon, 2018. "On the optimal choice of strike conventions in exchange option pricing," Papers 1807.05396, arXiv.org.
    20. Christian Bayer & Peter K. Friz & Paul Gassiat & Joerg Martin & Benjamin Stemper, 2017. "A regularity structure for rough volatility," Papers 1710.07481, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.