IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf274.html
   My bibliography  Save this paper

Sde Weak Approximation Library (Sde Wa) (Version 1.0)

Author

Listed:
  • Mariko Ninomiya

    (Faculty of Economics, The University of Tokyo)

Abstract

In application of mathematical finance to practical problems, weak approximation of stochastic differential equations (SDEs) is one of the most important themes.In probabilistic approach to this problem, the Euler-Maruyama scheme which is a first-order weak approximation scheme has been used. Kusuoka recently proposed a weak approximation schceme for diffusion processes. Lyons andVictoir extensively developed the idea of this scheme to establish the cubature formula on the Weiner space. These results and the spread of quasi Monte Carlo method showed the efficiency of higher-order weak approximation which is often called Kusuoka approximation or KLV scheme. Ninomiya-Victoir and Ninomiya-Ninomiya successfully constructed algorithms of this scheme. These algorithms have been improved in a number of research. (Fujiwara, Ooshima-Teichman-Veluscek, etc.) The author constructed a universal numerical library written inCfor calculation of weak approximation of any fiven SDEs following the Kusuoka scheme. Two types of algorithms mentioned above (NV and NN) of the Kusuoka scheme are included in this library. The Euler-Maruyama scheme is also available in this library. The source code for this library can be obtained by downloading it from https://sites.google.com/site/marikoninomiya/

Suggested Citation

  • Mariko Ninomiya, 2011. "Sde Weak Approximation Library (Sde Wa) (Version 1.0)," CARF F-Series CARF-F-274, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf274
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/286.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syoiti Ninomiya & Nicolas Victoir, 2008. "Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 107-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    2. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
    3. Rey, Clément, 2019. "Approximation of Markov semigroups in total variation distance under an irregular setting: An application to the CIR process," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 539-571.
    4. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "Exact and high order discretization schemes for Wishart processes and their affine extensions," Post-Print hal-00491371, HAL.
    5. Kazuhiro Yoshikawa, 2015. "An Approximation Scheme for Diffusion Processes Based on an Antisymmetric Calculus over Wiener Space," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(2), pages 185-207, May.
    6. Christian Bayer & Peter K. Friz, 2013. "Cubature on Wiener space: pathwise convergence," Papers 1304.4623, arXiv.org.
    7. Akiyama, Naho & Yamada, Toshihiro, 2024. "A weak approximation for Bismut’s formula: An algorithmic differentiation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 386-396.
    8. Abdelkoddousse Ahdida & Aur'elien Alfonsi, 2011. "A Mean-Reverting SDE on Correlation matrices," Papers 1108.5264, arXiv.org, revised Feb 2012.
    9. Riu Naito & Toshihiro Yamada, 2024. "Deep high-order splitting method for semilinear degenerate PDEs and application to high-dimensional nonlinear pricing models," Digital Finance, Springer, vol. 6(4), pages 693-725, December.
    10. Syoiti Ninomiya & Yuming Ma, 2025. "A new architecture of high-order deep neural networks that learn martingales," Papers 2505.03789, arXiv.org, revised Jun 2025.
    11. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de opciones call asiáticas Promedio Aritmético usando Taylor Estocástico 1.5," Working Papers 44, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    12. Hocquet, Antoine & Vogler, Alexander, 2023. "An application of the multiplicative Sewing Lemma to the high order weak approximation of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 183-217.
    13. Christian Bayer & Peter K. Friz & Paul Gassiat & Joerg Martin & Benjamin Stemper, 2017. "A regularity structure for rough volatility," Papers 1710.07481, arXiv.org.
    14. Al Gerbi, A. & Jourdain, B. & Clément, E., 2018. "Asymptotics for the normalized error of the Ninomiya–Victoir scheme," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1889-1928.
    15. Kenichiro Shiraya & Akihiko Takahashi & Masashi Toda, 2009. "Pricing Barrier and Average Options under Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-682, CIRJE, Faculty of Economics, University of Tokyo.
    16. Riu Naito & Toshihiro Yamada, 2024. "Deep Kusuoka Approximation: High-Order Spatial Approximation for Solving High-Dimensional Kolmogorov Equations and Its Application to Finance," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1443-1461, September.
    17. Arturo Kohatsu-Higa & Salvador Ortiz-Latorre & Peter Tankov, 2012. "Optimal simulation schemes for L\'evy driven stochastic differential equations," Papers 1204.4877, arXiv.org.
    18. Yusuke Morimoto & Makiko Sasada, 2015. "Algebraic Structure of Vector Fields in Financial Diffusion Models and its Applications," Papers 1510.02013, arXiv.org, revised Dec 2015.
    19. Shigeto Kusuoka & Mariko Ninomiya & Syoiti Ninomiya, 2012. "Application Of The Kusuoka Approximation To Barrier Options," CARF F-Series CARF-F-277, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.