IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt9kb9x6n5.html
   My bibliography  Save this paper

Analyses of Start-Stop Waves in Congested Freeway Traffic

Author

Listed:
  • Mauch, Michael

Abstract

Freeway traffic was observed over multiple days and was found to display certain regular features. Oscillations arose only in queues; they had periods of several minutes; and their amplitudes stabilized as they propagated upstream. They propagated at a nearly constant speed of about 20 to 24 kilometers per hour, independent of the location within the queues and the flow measured there; this was observed for a number of locations and for queued flows ranging from about 850 to 2,000 vehicles per hour per lane. The effects of the oscillations were not felt downstream of the bottleneck. Thus, the only effect on upstream traffic was that a queue’s tail meandered over time by small amounts. (For the long queues studied here, the tails deviated by no more than about 16 vehicle spacings, as compared with predictions that ignored the oscillations). Notably, the character of queued traffic at fixed locations did not change with time, despite the oscillations; i.e., traffic did not decay. There were changes over space, however. New oscillations formed in moderately dense queues near ramp interchanges and then grew to their full amplitudes while propagating upstream, even though the range of wave speeds was narrow. The formations of these new oscillations were strongly correlated with vehicle lane-changing. It thus appears that the oscillations were triggered by random vehicle lane-changing in moderately dense queues more than by car-following effects. But this pattern of formation and growth was less evident in a very dense queue (caused by an incident), although frequent lane-changing occurred near the interchanges. Finally, kinematic wave theory was found to describe the propagation of the oscillatory (i.e., start-stop waves) to within small errors. For distances approaching one kilometer, and for two-hour periods, the theory predicted the locations of vehicles to within about 5 vehicle spacings. Further analysis showed that some of these small discrepancies are explained by differences in car-following behavior across drivers.

Suggested Citation

  • Mauch, Michael, 2002. "Analyses of Start-Stop Waves in Congested Freeway Traffic," University of California Transportation Center, Working Papers qt9kb9x6n5, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt9kb9x6n5
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9kb9x6n5.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castillo, Jose M. del, 2001. "Propagation of perturbations in dense traffic flow: a model and its implications," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 367-389, May.
    2. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    3. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    4. Cassidy, Michael J. & Windover, John R., 1998. "Driver memory: Motorist selection and retention of individualized headways in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 129-137, February.
    5. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    6. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    7. Cassidy, M. J. & Mauch, Michael, 2001. "An observed traffic pattern in long freeway queues," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(2), pages 143-156, February.
    8. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauch, Michael & Cassidy, Michael J., 2004. "Freeway Traffic Oscillations: Observations and Predictions," University of California Transportation Center, Working Papers qt89c3h1vv, University of California Transportation Center.
    2. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    3. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    4. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    5. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    6. Daganzo, Carlos F., 2006. "In traffic flow, cellular automata = kinematic waves," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 396-403, June.
    7. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    8. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    9. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    10. Wei, Yuguang & Avcı, Cafer & Liu, Jiangtao & Belezamo, Baloka & Aydın, Nizamettin & Li, Pengfei(Taylor) & Zhou, Xuesong, 2017. "Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 102-129.
    11. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.
    12. Daganzo, Carlos F., 2011. "On the macroscopic stability of freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 782-788, June.
    13. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    14. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Freeway traffic oscillations: Microscopic analysis of formations and propagations using Wavelet Transform," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1378-1388.
    15. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    16. Jin, Wen-Long, 2017. "A first-order behavioral model of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 438-457.
    17. Gu, Weihua & Gayah, Vikash V. & Cassidy, Michael J. & Saade, Nathalie, 2014. "On the impacts of bus stops near signalized intersections: Models of car and bus delays," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 123-140.
    18. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    19. Coifman, Benjamin, 2015. "Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 54-65.
    20. Jingqiu Guo & Xinyao Chen & Yuqi Pang & Yibing Wang & Pengjun Zheng, 2019. "Bottlenecks, Shockwave, and Off-Ramp Blockage on Freeways," Sustainability, MDPI, vol. 11(18), pages 1-23, September.

    More about this item

    Keywords

    Social and Behavioral Sciences;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt9kb9x6n5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.