IDEAS home Printed from
   My bibliography  Save this paper

Detection and Avoidance of Collisions: the REACT Model


  • Sauer, Craig
  • Andersen, Goerge J.
  • Saidpour, Asad


An important perceptual task during driving is the ability to detect and avoid collisions. Failure to accurately perform this task can have serious consequences for the driver and passengers. The present research developed and tested a model of car following by human drivers, as part of a general model under development of a human driver. Unlike other car following models that are based on 3D parameters (e.g., range or distance) the present model is based on the visual information available to the driver. The model uses visual angle and change in visual angle to regulate speed during car following. Human factors experiments in a driving simulator examined performance in car following to speed variations defined by sine wave oscillations in speed, sum of sine wave oscillations, and ramp function. In addition, using real world driving data the model was applied to 6 driving events. The model provided a good fit to car following performance in the driving simulation studies as well as the real-world driving data, accounting for up to 96% of the variability in speed for the real world driving events.

Suggested Citation

  • Sauer, Craig & Andersen, Goerge J. & Saidpour, Asad, 2004. "Detection and Avoidance of Collisions: the REACT Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7st785tt, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt7st785tt

    Download full text from publisher

    File URL:;origin=repeccitec
    Download Restriction: no

    References listed on IDEAS

    1. Zhang, Xiaoyan & Jarrett, David F., 1997. "Stability analysis of the classical car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 441-462, November.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt7st785tt. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.