IDEAS home Printed from
   My bibliography  Save this paper

An examination of tourist arrivals dynamics using short-term time series data: a space-time cluster approach


  • Dogan Gursoy

    () (School of Hospitality Business Management, Washington State University)

  • Anna Maria Parroco

    () (Department of Economics, Business and Finance, University of Palermo)

  • Raffaele Scuderi

    () (Free University of Bolzano†Bozen, School of Economics and Management.)


The purpose of this study is to examine the development of Italian tourist areas (circoscrizioni turistiche) through a cluster analysis of short time series. The technique is an adaptation of the functional data analysis approach developed by Abraham et al (2003), which combines spline interpolation with k-means clustering. The findings indicate the presence of two patterns (increasing and stable) averagely characterizing groups of territories. Moreover, tests of spatial contiguity suggest the presence of ‘space–time clusters’; that is, areas in the same ‘time cluster’ are also spatially contiguous. These findings appear to be more robust in particular for those series characterized by an increasing trend.

Suggested Citation

  • Dogan Gursoy & Anna Maria Parroco & Raffaele Scuderi, 2013. "An examination of tourist arrivals dynamics using short-term time series data: a space-time cluster approach," BEMPS - Bozen Economics & Management Paper Series BEMPS06, Faculty of Economics and Management at the Free University of Bozen.
  • Handle: RePEc:bzn:wpaper:bemps06

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. C. Abraham & P. A. Cornillon & E. Matzner-Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B-Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595.
    2. JG. Brida & M. Pulina, 2010. "A literature review on the tourism-led-growth hypothesis," Working Paper CRENoS 201017, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    3. Mark Chiang & Boris Mirkin, 2010. "Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 3-40, March.
    4. Daria Mendola & Raffaele Scuderi & Valerio Lacagnina, 2013. "Defining and measuring the development of a country over time: a proposal of a new index," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(5), pages 2473-2494, August.
    Full references (including those not matched with items on IDEAS)

    More about this item


    cluster analysis; short time series; spline interpolation; K-means; join count test; Italian tourist areas;

    JEL classification:

    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bzn:wpaper:bemps06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (F. Marta L. Di Lascio) or (Alessandro Fedele). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.