IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/680.html
   My bibliography  Save this paper

Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups

Author

Listed:
  • Blessing, Jonas

    (Center for Mathematical Economics, Bielefeld University)

  • Kupper, Michael

    (Center for Mathematical Economics, Bielefeld University)

  • Nendel, Max

    (Center for Mathematical Economics, Bielefeld University)

Abstract

Based on the convergence of their infinitesimal generators in the mixed topology, we provide a stability result for strongly continuous convex monotone semigroups on spaces of continuous functions. In contrast to previous results, we do not rely on the theory of viscosity solutions but use a recent comparison principle which uniquely determines the semigroup via its Γ-generator defined on the Lipschitz set and therefore resembles the classical analogue from the linear case. The framework also allows for discretizations both in time and space and covers a variety of applications. This includes Euler schemes and Yosida-type approximations for upper envelopes of families of linear semigroups, stability results and finite-difference schemes for convex HJB equations, Freidlin–Wentzell-type results and Markov chain approximations for a class of stochastic optimal control problems and continuous-time Markov processes with uncertain transition probabilities.

Suggested Citation

  • Blessing, Jonas & Kupper, Michael & Nendel, Max, 2023. "Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups," Center for Mathematical Economics Working Papers 680, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:680
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2979730/2979731
    File Function: First Version, 2023
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2021. "Stability of backward stochastic differential equations: the general case," Papers 2107.11048, arXiv.org, revised Apr 2023.
    2. Briand, Philippe & Delyon, Bernard & Mémin, Jean, 2002. "On the robustness of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 229-253, February.
    3. Daniel Bartl & Samuel Drapeau & Jan Obloj & Johannes Wiesel, 2020. "Sensitivity analysis of Wasserstein distributionally robust optimization problems," Papers 2006.12022, arXiv.org, revised Nov 2021.
    4. Tolulope Fadina & Ariel Neufeld & Thorsten Schmidt, 2018. "Affine processes under parameter uncertainty," Papers 1806.02912, arXiv.org, revised Mar 2019.
    5. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    6. Jin Feng & Jean-Pierre Fouque & Rohini Kumar, 2010. "Small-time asymptotics for fast mean-reverting stochastic volatility models," Papers 1009.2782, arXiv.org, revised Aug 2012.
    7. Blessing, Jonas & Denk, Robert & Kupper, Michael & Nendel, Max, 2022. "Convex Monotone Semigroups and their Generators with Respect to $\Gamma$-Convergence," Center for Mathematical Economics Working Papers 662, Center for Mathematical Economics, Bielefeld University.
    8. Popovic, Lea, 2019. "Large deviations of Markov chains with multiple time-scales," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3319-3359.
    9. Gao, Fuqing & Jiang, Hui, 2010. "Large deviations for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2212-2240, November.
    10. Daniel Bartl & Stephan Eckstein & Michael Kupper, 2020. "Limits of random walks with distributionally robust transition probabilities," Papers 2007.08815, arXiv.org, revised Apr 2021.
    11. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    12. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Blessing & Michael Kupper & Alessandro Sgarabottolo, 2024. "Discrete approximation of risk-based prices under volatility uncertainty," Papers 2411.00713, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Blessing & Michael Kupper & Alessandro Sgarabottolo, 2024. "Discrete approximation of risk-based prices under volatility uncertainty," Papers 2411.00713, arXiv.org.
    2. Fuhrmann, Sven & Kupper, Michael & Nendel, Max, 2021. "Wasserstein Perturbations of Markovian Transition Semigroups," Center for Mathematical Economics Working Papers 649, Center for Mathematical Economics, Bielefeld University.
    3. Daniel Bartl & Ariel Neufeld & Kyunghyun Park, 2023. "Sensitivity of robust optimization problems under drift and volatility uncertainty," Papers 2311.11248, arXiv.org.
    4. Chenguang Liu & Antonis Papapantoleon & Alexandros Saplaouras, 2024. "Convergence rates for Backward SDEs driven by L\'evy processes," Papers 2402.01337, arXiv.org.
    5. Ceci, Claudia & Cretarola, Alessandra & Russo, Francesco, 2014. "BSDEs under partial information and financial applications," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2628-2653.
    6. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    7. Madan, Dilip & Pistorius, Martijn & Stadje, Mitja, 2016. "Convergence of BSΔEs driven by random walks to BSDEs: The case of (in)finite activity jumps with general driver," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1553-1584.
    8. Ariel Neufeld & Matthew Ng Cheng En & Ying Zhang, 2024. "Robust SGLD algorithm for solving non-convex distributionally robust optimisation problems," Papers 2403.09532, arXiv.org.
    9. Yao, Song, 2017. "Lp solutions of backward stochastic differential equations with jumps," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3465-3511.
    10. Ruslan Mirmominov & Johannes Wiesel, 2024. "A dynamic programming principle for multiperiod control problems with bicausal constraints," Papers 2410.23927, arXiv.org.
    11. Cheridito, Patrick & Stadje, Mitja, 2012. "Existence, minimality and approximation of solutions to BSDEs with convex drivers," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1540-1565.
    12. Daniel Bartl & Johannes Wiesel, 2022. "Sensitivity of multiperiod optimization problems in adapted Wasserstein distance," Papers 2208.05656, arXiv.org, revised Jun 2023.
    13. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    14. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    15. Bouchard Bruno & Tan Xiaolu & Warin Xavier & Zou Yiyi, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    16. Criens, David & Niemann, Lars, 2024. "A class of multidimensional nonlinear diffusions with the Feller property," Statistics & Probability Letters, Elsevier, vol. 208(C).
    17. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    18. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    19. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    20. Mingyu Xu, 2007. "Reflected Backward SDEs with Two Barriers Under Monotonicity and General Increasing Conditions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 1005-1039, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.