Possibilistic Instrumental Variable Regression
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021.
"The confidence interval method for selecting valid instrumental variables,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
- Frank Windmeijer & Xiaoran Liang & Fernando P Hartwig & Jack Bowden, 2019. "The Confidence Interval Method for Selecting Valid Instrumental Variables," Bristol Economics Discussion Papers 19/715, School of Economics, University of Bristol, UK.
- Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019.
"On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
- Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2016. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Bristol Economics Discussion Papers 16/674, School of Economics, University of Bristol, UK, revised 08 Aug 2017.
- Windmeijer, Frank & Farbmacher, Helmut & Davies, Neil & Smith, George Davey, 2017. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168196, Verein für Socialpolitik / German Economic Association.
- Windmeijer, F.; Farbmacher, H.; Davies, N.; Davey Smith, G.;, 2017. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Health, Econometrics and Data Group (HEDG) Working Papers 17/22, HEDG, c/o Department of Economics, University of York.
- Gregor Steiner & Mark Steel, 2025. "Bayesian Model Averaging in Causal Instrumental Variable Models," Papers 2504.13520, arXiv.org, revised Sep 2025.
- Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
- Daron Acemoglu & Simon Johnson & James A. Robinson, 2001.
"The Colonial Origins of Comparative Development: An Empirical Investigation,"
American Economic Review, American Economic Association, vol. 91(5), pages 1369-1401, December.
- Daron Acemoglu & Simon Johnson & James A. Robinson, 2000. "The Colonial Origins of Comparative Development: An Empirical Investigation," NBER Working Papers 7771, National Bureau of Economic Research, Inc.
- Siddhartha Chib & Minchul Shin & Anna Simoni, 2018.
"Bayesian Estimation and Comparison of Moment Condition Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1656-1668, October.
- Siddhartha Chib & Minchul Shin & Anna Simoni, 2018. "Bayesian Estimation and Comparison of Moment Condition Models," Post-Print hal-03089882, HAL.
- Timothy B. Armstrong & Michal Kolesár, 2021.
"Sensitivity analysis using approximate moment condition models,"
Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
- Timothy B. Armstrong & Michal Koles'r, 2018. "Sensitivity Analysis using Approximate Moment Condition Models," Cowles Foundation Discussion Papers 2158, Cowles Foundation for Research in Economics, Yale University.
- Timothy B. Armstrong & Michal Koles'ar, 2018. "Sensitivity Analysis using Approximate Moment Condition Models," Papers 1808.07387, arXiv.org, revised Jul 2020.
- Timothy B. Armstrong & Michal Koles'r, 2018. "Sensitivity Analysis using Approximate Moment Condition Models," Cowles Foundation Discussion Papers 2158R, Cowles Foundation for Research in Economics, Yale University, revised Feb 2019.
- Timothy B. Armstrong & Michal Kolesár, 2020. "Sensitivity Analysis using Approximate Moment Condition Models," Working Papers 2020-28, Princeton University. Economics Department..
- Ryan Martin & Chuanhai Liu, 2013. "Inferential Models: A Framework for Prior-Free Posterior Probabilistic Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 301-313, March.
- Small, Dylan S., 2007. "Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1049-1058, September.
- Zijian Guo & Hyunseung Kang & T. Tony Cai & Dylan S. Small, 2018. "Confidence intervals for causal effects with invalid instruments by using two‐stage hard thresholding with voting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 793-815, September.
- Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015.
"Identification and Inference With Many Invalid Instruments,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
- Michal Kolesár & Raj Chetty & John N. Friedman & Edward L. Glaeser & Guido W. Imbens, 2011. "Identification and Inference with Many Invalid Instruments," NBER Working Papers 17519, National Bureau of Economic Research, Inc.
- Kolesar, Michal & Chetty, Raj & Friedman, John & Glaeser, Edward Ludwig & Imbens, Guido, 2015. "Identification and Inference With Many Invalid Instruments," Scholarly Articles 27769098, Harvard University Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
- Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
- Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.
- Hyunseung Kang & Youjin Lee & T. Tony Cai & Dylan S. Small, 2022. "Two robust tools for inference about causal effects with invalid instruments," Biometrics, The International Biometric Society, vol. 78(1), pages 24-34, March.
- Gregor Steiner & Mark Steel, 2025. "Bayesian Model Averaging in Causal Instrumental Variable Models," Papers 2504.13520, arXiv.org, revised Sep 2025.
- Xiaoran Liang & Eleanor Sanderson & Frank Windmeijer, 2022.
"Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator,"
Papers
2208.05278, arXiv.org.
- Liang, X.; & Sanderson, E.; & Windmeijer, F.;, 2022. "Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator," Health, Econometrics and Data Group (HEDG) Working Papers 22/22, HEDG, c/o Department of Economics, University of York.
- Nicolas Apfel & Helmut Farbmacher & Rebecca Groh & Martin Huber & Henrika Langen, 2022. "Detecting Grouped Local Average Treatment Effects and Selecting True Instruments," Papers 2207.04481, arXiv.org, revised Oct 2023.
- Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
- Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
- Hongwei Shi & Xinyu Zhang & Xu Guo & Baihua He & Chenyang Wang, 2025. "Testing overidentifying restrictions on high-dimensional instruments and covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(2), pages 331-352, April.
- Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
- Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021.
"The confidence interval method for selecting valid instrumental variables,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
- Frank Windmeijer & Xiaoran Liang & Fernando P Hartwig & Jack Bowden, 2019. "The Confidence Interval Method for Selecting Valid Instrumental Variables," Bristol Economics Discussion Papers 19/715, School of Economics, University of Bristol, UK.
- Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
- Nicolas Apfel & Frank Windmeijer, 2022. "The Falsification Adaptive Set in Linear Models with Instrumental Variables that Violate the Exclusion or Conditional Exogeneity Restriction," Papers 2212.04814, arXiv.org, revised Apr 2024.
- Nicolas Apfel & Xiaoran Liang, 2024. "Agglomerative hierarchical clustering for selecting valid instrumental variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1201-1219, November.
- Hans (J.L.W.) van Kippersluis & Niels (C.A.) Rietveld, 2017. "Beyond Plausibly Exogenous," Tinbergen Institute Discussion Papers 17-096/V, Tinbergen Institute.
- Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.
- Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
- Nicolas Apfel & Julia Hatamyar & Martin Huber & Jannis Kueck, 2024. "Learning control variables and instruments for causal analysis in observational data," Papers 2407.04448, arXiv.org, revised Sep 2025.
- Victor Chernozhukov & Christian B. Hansen & Lingwei Kong & Weining Wang, 2025.
"Plausible GMM: A Quasi-Bayesian Approach,"
Bristol Economics Discussion Papers
25/817, School of Economics, University of Bristol, UK.
- Victor Chernozhukov & Christian B. Hansen & Lingwei Kong & Weining Wang, 2025. "Plausible GMM: A Quasi-Bayesian Approach," Papers 2507.00555, arXiv.org.
- Victor Chernozhukov & Christian Hansen & Lingwei Kong & Weining Wang, 2025. "Plausible GMM: a quasi-bayesian approach," CeMMAP working papers 14/25, Institute for Fiscal Studies.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-11-24 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.16029. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2511.16029.html