IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.19494.html
   My bibliography  Save this paper

Quantum Machine Learning methods for Fourier-based distribution estimation with application in option pricing

Author

Listed:
  • Fernando Alonso
  • 'Alvaro Leitao
  • Carlos V'azquez

Abstract

The ongoing progress in quantum technologies has fueled a sustained exploration of their potential applications across various domains. One particularly promising field is quantitative finance, where a central challenge is the pricing of financial derivatives-traditionally addressed through Monte Carlo integration techniques. In this work, we introduce two hybrid classical-quantum methods to address the option pricing problem. These approaches rely on reconstructing Fourier series representations of statistical distributions from the outputs of Quantum Machine Learning (QML) models based on Parametrized Quantum Circuits (PQCs). We analyze the impact of data size and PQC dimensionality on performance. Quantum Accelerated Monte Carlo (QAMC) is employed as a benchmark to quantitatively assess the proposed models in terms of computational cost and accuracy in the extraction of Fourier coefficients. Through the numerical experiments, we show that the proposed methods achieve remarkable accuracy, becoming a competitive quantum alternative for derivatives valuation.

Suggested Citation

  • Fernando Alonso & 'Alvaro Leitao & Carlos V'azquez, 2025. "Quantum Machine Learning methods for Fourier-based distribution estimation with application in option pricing," Papers 2510.19494, arXiv.org.
  • Handle: RePEc:arx:papers:2510.19494
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.19494
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong An & Noah Linden & Jin-Peng Liu & Ashley Montanaro & Changpeng Shao & Jiasu Wang, 2020. "Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance," Papers 2012.06283, arXiv.org, revised Jun 2021.
    2. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takayuki Sakuma, 2020. "Application of deep quantum neural networks to finance," Papers 2011.07319, arXiv.org, revised May 2022.
    2. Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
    3. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    4. Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.
    5. Lotfi Boudabsa & Damir Filipović, 2022. "Machine learning with kernels for portfolio valuation and risk management," Finance and Stochastics, Springer, vol. 26(2), pages 131-172, April.
    6. Lorenc Kapllani & Long Teng, 2024. "A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2408.05620, arXiv.org.
    7. Francisco G'omez Casanova & 'Alvaro Leitao & Fernando de Lope Contreras & Carlos V'azquez, 2024. "Deep Joint Learning valuation of Bermudan Swaptions," Papers 2404.11257, arXiv.org.
    8. Jianjun Chen & Yongming Li & Ariel Neufeld, 2023. "Quantum Monte Carlo algorithm for solving Black-Scholes PDEs for high-dimensional option pricing in finance and its complexity analysis," Papers 2301.09241, arXiv.org, revised Nov 2025.
    9. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
    10. Lokman A Abbas-Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA Regressions With Oversimulated Defaults," Post-Print hal-03910149, HAL.
    11. Magnus Grønnegaard Frandsen & Tobias Cramer Pedersen & Rolf Poulsen, 2022. "Delta force: option pricing with differential machine learning," Digital Finance, Springer, vol. 4(1), pages 1-15, March.
    12. Alejandro Rodriguez Dominguez, 2022. "Portfolio Optimization based on Neural Networks Sensitivities from Assets Dynamics respect Common Drivers," Papers 2202.08921, arXiv.org, revised Dec 2022.
    13. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "Preparing random state for quantum financing with quantum walks," Papers 2302.12500, arXiv.org, revised Mar 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.19494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.