IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.18161.html
   My bibliography  Save this paper

Beating the Winner's Curse via Inference-Aware Policy Optimization

Author

Listed:
  • Hamsa Bastani
  • Osbert Bastani
  • Bryce McLaughlin

Abstract

There has been a surge of recent interest in automatically learning policies to target treatment decisions based on rich individual covariates. A common approach is to train a machine learning model to predict counterfactual outcomes, and then select the policy that optimizes the predicted objective value. In addition, practitioners also want confidence that the learned policy has better performance than the incumbent policy according to downstream policy evaluation. However, due to the winner's curse-an issue where the policy optimization procedure exploits prediction errors rather than finding actual improvements-predicted performance improvements are often not substantiated by downstream policy optimization. To address this challenge, we propose a novel strategy called inference-aware policy optimization, which modifies policy optimization to account for how the policy will be evaluated downstream. Specifically, it optimizes not only for the estimated objective value, but also for the chances that the policy will be statistically significantly better than the observational policy used to collect data. We mathematically characterize the Pareto frontier of policies according to the tradeoff of these two goals. Based on our characterization, we design a policy optimization algorithm that uses machine learning to predict counterfactual outcomes, and then plugs in these predictions to estimate the Pareto frontier; then, the decision-maker can select the policy that optimizes their desired tradeoff, after which policy evaluation can be performed on the test set as usual. Finally, we perform simulations to illustrate the effectiveness of our methodology.

Suggested Citation

  • Hamsa Bastani & Osbert Bastani & Bryce McLaughlin, 2025. "Beating the Winner's Curse via Inference-Aware Policy Optimization," Papers 2510.18161, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2510.18161
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.18161
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vishal Gupta & Michael Huang & Paat Rusmevichientong, 2024. "Debiasing In-Sample Policy Performance for Small-Data, Large-Scale Optimization," Operations Research, INFORMS, vol. 72(2), pages 848-870, March.
    2. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
    3. Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2024. "Policy Learning with Adaptively Collected Data," Management Science, INFORMS, vol. 70(8), pages 5270-5297, August.
    4. Thaler, Richard H, 1988. "Anomalies: The Winner's Curse," Journal of Economic Perspectives, American Economic Association, vol. 2(1), pages 191-202, Winter.
    5. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    6. Suparerk Lekwijit & Christian Terwiesch & David A. Asch & Kevin G. Volpp, 2024. "Evaluating the Efficacy of Connected Healthcare: An Empirical Examination of Patient Engagement Approaches and Their Impact on Readmission," Management Science, INFORMS, vol. 70(6), pages 3417-3446, June.
    7. Justin J. Boutilier & Jónas Oddur Jónasson & Erez Yoeli, 2022. "Improving Tuberculosis Treatment Adherence Support: The Case for Targeted Behavioral Interventions," Manufacturing & Service Operations Management, INFORMS, vol. 24(6), pages 2925-2943, November.
    8. Victor Chernozhukov & Sokbae Lee & Adam Rosen & Liyang Sun, 2025. "Policy learning with confidence," CeMMAP working papers 15/25, Institute for Fiscal Studies.
    9. Xin Zhou & Nicole Mayer-Hamblett & Umer Khan & Michael R. Kosorok, 2017. "Residual Weighted Learning for Estimating Individualized Treatment Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 169-187, January.
    10. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    2. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    3. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    4. Wei Liu & Zhiwei Zhang & Lei Nie & Guoxing Soon, 2017. "A Case Study in Personalized Medicine: Rilpivirine Versus Efavirenz for Treatment-Naive HIV Patients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1381-1392, October.
    5. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    6. Giorgos Bakoyannis, 2023. "Estimating optimal individualized treatment rules with multistate processes," Biometrics, The International Biometric Society, vol. 79(4), pages 2830-2842, December.
    7. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    8. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    9. Zhishuai Liu & Jesse Clifton & Eric B. Laber & John Drake & Ethan X. Fang, 2023. "Deep Spatial Q-Learning for Infectious Disease Control," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(4), pages 749-773, December.
    10. Guanhua Chen & Donglin Zeng & Michael R. Kosorok, 2016. "Personalized Dose Finding Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1509-1521, October.
    11. Qingyuan Zhao & Dylan S. Small & Ashkan Ertefaie, 2022. "Selective inference for effect modification via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 382-413, April.
    12. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    13. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    14. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    15. Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2024. "Policy Learning with Adaptively Collected Data," Management Science, INFORMS, vol. 70(8), pages 5270-5297, August.
    16. Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
    17. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    18. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    19. Kushal S. Shah & Haoda Fu & Michael R. Kosorok, 2023. "Stabilized direct learning for efficient estimation of individualized treatment rules," Biometrics, The International Biometric Society, vol. 79(4), pages 2843-2856, December.
    20. Yizhe Xu & Tom H. Greene & Adam P. Bress & Brian C. Sauer & Brandon K. Bellows & Yue Zhang & William S. Weintraub & Andrew E. Moran & Jincheng Shen, 2022. "Estimating the optimal individualized treatment rule from a cost‐effectiveness perspective," Biometrics, The International Biometric Society, vol. 78(1), pages 337-351, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.18161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.