IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.16938.html
   My bibliography  Save this paper

A Topological Approach to Parameterizing Deep Hedging Networks

Author

Listed:
  • Alok Das
  • Kiseop Lee

Abstract

Deep hedging uses recurrent neural networks to hedge financial products that cannot be fully hedged in incomplete markets. Previous work in this area focuses on minimizing some measure of quadratic hedging error by calculating pathwise gradients, but doing so requires large batch sizes and can make training effective models in a reasonable amount of time challenging. We show that by adding certain topological features, we can reduce batch sizes substantially and make training these models more practically feasible without greatly compromising hedging performance.

Suggested Citation

  • Alok Das & Kiseop Lee, 2025. "A Topological Approach to Parameterizing Deep Hedging Networks," Papers 2510.16938, arXiv.org.
  • Handle: RePEc:arx:papers:2510.16938
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.16938
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Carbonneau, 2020. "Deep Hedging of Long-Term Financial Derivatives," Papers 2007.15128, arXiv.org.
    2. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos O. P'erez-Mendoza, 2025. "Deep Hedging with Options Using the Implied Volatility Surface," Papers 2504.06208, arXiv.org, revised Aug 2025.
    3. Konrad Mueller & Amira Akkari & Lukas Gonon & Ben Wood, 2024. "Fast Deep Hedging with Second-Order Optimization," Papers 2410.22568, arXiv.org.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    6. Kenjiro Oya, 2024. "Deep Hedging Bermudan Swaptions," Papers 2411.10079, arXiv.org.
    7. Andrei Neagu & Fr'ed'eric Godin & Clarence Simard & Leila Kosseim, 2024. "Deep Hedging with Market Impact," Papers 2402.13326, arXiv.org, revised Feb 2024.
    8. Bernhard Hientzsch, 2023. "Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging," Papers 2401.08600, arXiv.org.
    9. Anish Rai & Buddha Nath Sharma & Salam Rabindrajit Luwang & Md. Nurujjaman & Sushovan Majhi, 2024. "Identifying Extreme Events in the Stock Market: A Topological Data Analysis," Papers 2405.16052, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    2. Zofia Bracha & Pawe{l} Sakowski & Jakub Micha'nk'ow, 2025. "Application of Deep Reinforcement Learning to At-the-Money S&P 500 Options Hedging," Papers 2510.09247, arXiv.org.
    3. Zoran Stoiljkovic, 2023. "Applying Reinforcement Learning to Option Pricing and Hedging," Papers 2310.04336, arXiv.org.
    4. Kang Gao & Stephen Weston & Perukrishnen Vytelingum & Namid R. Stillman & Wayne Luk & Ce Guo, 2023. "Deeper Hedging: A New Agent-based Model for Effective Deep Hedging," Papers 2310.18755, arXiv.org.
    5. Xia, Kun & Yang, Xuewei & Zhu, Peng, 2023. "Delta hedging and volatility-price elasticity: A two-step approach," Journal of Banking & Finance, Elsevier, vol. 153(C).
    6. Reilly Pickard & F. Wredenhagen & Y. Lawryshyn, 2024. "Optimizing Deep Reinforcement Learning for American Put Option Hedging," Papers 2405.08602, arXiv.org.
    7. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    8. Xianhua Peng & Xiang Zhou & Bo Xiao & Yi Wu, 2024. "A Risk Sensitive Contract-unified Reinforcement Learning Approach for Option Hedging," Papers 2411.09659, arXiv.org.
    9. Yiheng Ding & Gangnan Yuan & Dewei Zuo & Ting Gao, 2025. "Hedging with Sparse Reward Reinforcement Learning," Papers 2503.04218, arXiv.org.
    10. Reilly Pickard & Finn Wredenhagen & Julio DeJesus & Mario Schlener & Yuri Lawryshyn, 2024. "Hedging American Put Options with Deep Reinforcement Learning," Papers 2405.06774, arXiv.org.
    11. Zheng Gong & Carmine Ventre & John O'Hara, 2021. "The Efficient Hedging Frontier with Deep Neural Networks," Papers 2104.05280, arXiv.org.
    12. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    13. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    14. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    15. Domagoj Demeterfi & Kathrin Glau & Linus Wunderlich, 2025. "Function approximations for counterparty credit exposure calculations," Papers 2507.09004, arXiv.org.
    16. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    17. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    18. Roberto Baviera & Michele Domenico Massaria, 2025. "Smile asymptotic for Bachelier Implied Volatility," Papers 2506.08067, arXiv.org, revised Nov 2025.
    19. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    20. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.16938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.