IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.15458.html
   My bibliography  Save this paper

Robust Optimization in Causal Models and G-Causal Normalizing Flows

Author

Listed:
  • Gabriele Visentin
  • Patrick Cheridito

Abstract

In this paper, we show that interventionally robust optimization problems in causal models are continuous under the $G$-causal Wasserstein distance, but may be discontinuous under the standard Wasserstein distance. This highlights the importance of using generative models that respect the causal structure when augmenting data for such tasks. To this end, we propose a new normalizing flow architecture that satisfies a universal approximation property for causal structural models and can be efficiently trained to minimize the $G$-causal Wasserstein distance. Empirically, we demonstrate that our model outperforms standard (non-causal) generative models in data augmentation for causal regression and mean-variance portfolio optimization in causal factor models.

Suggested Citation

  • Gabriele Visentin & Patrick Cheridito, 2025. "Robust Optimization in Causal Models and G-Causal Normalizing Flows," Papers 2510.15458, arXiv.org.
  • Handle: RePEc:arx:papers:2510.15458
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.15458
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    2. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. Jiawang Nie & Suhan Zhong, 2025. "Distributionally Robust Optimization with Polynomial Robust Constraints," Journal of Global Optimization, Springer, vol. 92(3), pages 509-534, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    2. Kupper, Michael & Nendel, Max & Sgarabottolo, Alessandro, 2025. "Risk measures based on weak optimal transport," Center for Mathematical Economics Working Papers 734, Center for Mathematical Economics, Bielefeld University.
    3. Beatrice Acciaio & Stephan Eckstein & Songyan Hou, 2024. "Time-Causal VAE: Robust Financial Time Series Generator," Papers 2411.02947, arXiv.org.
    4. Beatrice Acciaio & Berenice Anne Neumann, 2025. "Characterization of transport optimizers via graphs and applications to Stackelberg–Cournot–Nash equilibria," Mathematics and Financial Economics, Springer, volume 19, number 3, December.
    5. Nicolas Boursin & Carl Remlinger & Joseph Mikael & Carol Anne Hargreaves, 2022. "Deep Generators on Commodity Markets; application to Deep Hedging," Papers 2205.13942, arXiv.org.
    6. Julio Backhoff-Veraguas & Xin Zhang, 2023. "Dynamic Cournot-Nash equilibrium: the non-potential case," Mathematics and Financial Economics, Springer, volume 17, number 1, December.
    7. Beatrice Acciaio & Julio Backhoff & Gudmund Pammer, 2022. "Quantitative Fundamental Theorem of Asset Pricing," Papers 2209.15037, arXiv.org, revised Jan 2024.
    8. Michael Kupper & Max Nendel & Alessandro Sgarabottolo, 2023. "Risk measures based on weak optimal transport," Papers 2312.05973, arXiv.org.
    9. Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
    10. Bingyan Han, 2022. "Distributionally robust risk evaluation with a causality constraint and structural information," Papers 2203.10571, arXiv.org, revised Jun 2025.
    11. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    12. Nathan Sauldubois & Nizar Touzi, 2024. "First order Martingale model risk and semi-static hedging," Papers 2410.06906, arXiv.org, revised Nov 2025.
    13. Beatrice Acciaio & Mathias Beiglboeck & Gudmund Pammer, 2020. "Weak Transport for Non-Convex Costs and Model-independence in a Fixed-Income Market," Papers 2011.04274, arXiv.org, revised Aug 2023.
    14. Beatrice Acciaio & Daniel Krv{s}ek & Gudmund Pammer, 2024. "Multicausal transport: barycenters and dynamic matching," Papers 2401.12748, arXiv.org, revised Jan 2025.
    15. Julio Backhoff-Veraguas & Gudmund Pammer & Walter Schachermayer, 2024. "The Gradient Flow of the Bass Functional in Martingale Optimal Transport," Papers 2407.18781, arXiv.org.
    16. Nicolas Boursin & Carl Remlinger & Joseph Mikael, 2022. "Deep Generators on Commodity Markets Application to Deep Hedging," Risks, MDPI, vol. 11(1), pages 1-18, December.
    17. Mathias Beiglbock & Gudmund Pammer & Lorenz Riess, 2024. "Change of numeraire for weak martingale transport," Papers 2406.07523, arXiv.org.
    18. Erhan Bayraktar & Bingyan Han, 2023. "Fitted value iteration methods for bicausal optimal transport," Papers 2306.12658, arXiv.org, revised Oct 2025.
    19. Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020. "Extended weak convergence and utility maximisation with proportional transaction costs," Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
    20. Ahmad Aghapour & Erhan Bayraktar & Fengyi Yuan, 2025. "Solving dynamic portfolio selection problems via score-based diffusion models," Papers 2507.09916, arXiv.org, revised Aug 2025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.15458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.