IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.14822.html
   My bibliography  Save this paper

Regression Model Selection Under General Conditions

Author

Listed:
  • Amaze Lusompa

Abstract

Model selection criteria are one of the most important tools in statistics. Proofs showing a model selection criterion is asymptotically optimal are tailored to the type of model (linear regression, quantile regression, penalized regression, etc.), the estimation method (linear smoothers, maximum likelihood, generalized method of moments, etc.), the type of data (i.i.d., dependent, high dimensional, etc.), and the type of model selection criterion. Moreover, assumptions are often restrictive and unrealistic making it a slow and winding process for researchers to determine if a model selection criterion is selecting an optimal model. This paper provides general proofs showing asymptotic optimality for a wide range of model selection criteria under general conditions. This paper not only asymptotically justifies model selection criteria for most situations, but it also unifies and extends a range of previously disparate results.

Suggested Citation

  • Amaze Lusompa, 2025. "Regression Model Selection Under General Conditions," Papers 2510.14822, arXiv.org.
  • Handle: RePEc:arx:papers:2510.14822
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.14822
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Andrews, Donald W. K., 1991. "Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 359-377, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:isu:genstf:201501010800005727 is not listed on IDEAS
    2. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    3. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    4. Narayan, Paresh Kumar & Narayan, Seema & Sharma, Susan Sunila, 2013. "An analysis of commodity markets: What gain for investors?," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3878-3889.
    5. Masud Alam, 2024. "Volatility in U.S. Housing Sector and the REIT Equity Return," The Journal of Real Estate Finance and Economics, Springer, vol. 69(3), pages 505-544, October.
    6. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    7. Ryan Compton & Syeed Khan, 2010. "An examination of the stability of short-run Canadian stock predictability," Economics Bulletin, AccessEcon, vol. 30(2), pages 1293-1306.
    8. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    9. Luo, Shikong & Yan, Xinyan & Yang, Haoyi, 2021. "Let’s take a smooth break: Stock return predictability revisited," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 300-314.
    10. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    11. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    12. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    13. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017. "Further evidence on bear market predictability: The role of the external finance premium," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.
    14. Zakamulin, Valeriy & Hunnes, John A., 2021. "Stock earnings and bond yields in the US 1871–2017: The story of a changing relationship," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 182-197.
    15. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    16. Yijie Fei, 2024. "A joint test of predictability and structural break in predictive regressions," Empirical Economics, Springer, vol. 67(3), pages 985-1013, September.
    17. Ibarra, Raul, 2013. "A spatial dominance approach to evaluate the performance of stocks and bonds: Does the investment horizon matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(4), pages 429-439.
    18. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    19. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    20. Smith, Simon C., 2017. "Equity premium estimates from economic fundamentals under structural breaks," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 49-61.
    21. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.14822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.