IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.14285.html
   My bibliography  Save this paper

Debiased Kernel Estimation of Spot Volatility in the Presence of Infinite Variation Jumps

Author

Listed:
  • B. Cooper Boniece
  • Jos'e E. Figueroa-L'opez
  • Tianwei Zhou

Abstract

Volatility estimation is a central problem in financial econometrics, but becomes particularly challenging when jump activity is high, a phenomenon observed empirically in highly traded financial securities. In this paper, we revisit the problem of spot volatility estimation for an It\^o semimartingale with jumps of unbounded variation. We construct truncated kernel-based estimators and debiased variants that extend the efficiency frontier for spot volatility estimation in terms of the jump activity index $Y$, raising the previous bound $Y

Suggested Citation

  • B. Cooper Boniece & Jos'e E. Figueroa-L'opez & Tianwei Zhou, 2025. "Debiased Kernel Estimation of Spot Volatility in the Presence of Infinite Variation Jumps," Papers 2510.14285, arXiv.org.
  • Handle: RePEc:arx:papers:2510.14285
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.14285
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cecilia Mancini, 2004. "Estimation of the Characteristics of the Jumps of a General Poisson-Diffusion Model," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2004(1), pages 42-52.
    2. Maria Elvira Mancino & Tommaso Mariotti & Giacomo Toscano, 2022. "Asymptotic Normality for the Fourier spot volatility estimator in the presence of microstructure noise," Papers 2209.08967, arXiv.org.
    3. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    4. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    5. Figueroa-López, José E. & Wu, Bei, 2024. "Kernel Estimation Of Spot Volatility With Microstructure Noise Using Pre-Averaging," Econometric Theory, Cambridge University Press, vol. 40(3), pages 558-607, June.
    6. Kristensen, Dennis, 2010. "Nonparametric Filtering Of The Realized Spot Volatility: A Kernel-Based Approach," Econometric Theory, Cambridge University Press, vol. 26(1), pages 60-93, February.
    7. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    2. Cuchiero, Christa & Teichmann, Josef, 2015. "Fourier transform methods for pathwise covariance estimation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 116-160.
    3. Boniece, B. Cooper & Figueroa-López, José E. & Han, Yuchen, 2024. "Efficient integrated volatility estimation in the presence of infinite variation jumps via debiased truncated realized variations," Stochastic Processes and their Applications, Elsevier, vol. 176(C).
    4. Mustafayeva, Konul & Wang, Weining, 2020. "Non-Parametric Estimation of Spot Covariance Matrix with High-Frequency Data," IRTG 1792 Discussion Papers 2020-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
    6. Liu, Qiang & Liu, Yiqi & Liu, Zhi, 2018. "Estimating spot volatility in the presence of infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1958-1987.
    7. José E. Figueroa-López & Cheng Li & Jeffrey Nisen, 2020. "Optimal iterative threshold-kernel estimation of jump diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 517-552, October.
    8. Qiang Liu & Zhi Liu & Wang Zhou, 2025. "On the estimation of leverage effect and volatility of volatility in the presence of jumps," Papers 2511.00944, arXiv.org.
    9. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    10. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    11. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    12. Maria Elvira Mancino & Tommaso Mariotti & Giacomo Toscano, 2022. "Asymptotic Normality for the Fourier spot volatility estimator in the presence of microstructure noise," Papers 2209.08967, arXiv.org.
    13. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
    14. Bu, R. & Li, D. & Linton, O. & Wang, H., 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Cambridge Working Papers in Economics 2218, Faculty of Economics, University of Cambridge.
    15. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    16. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    17. Figueroa-López, José E. & Li, Cheng, 2020. "Optimal kernel estimation of spot volatility of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4693-4720.
    18. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    19. Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
    20. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.14285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.