IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.08805.html
   My bibliography  Save this paper

Lifted Heston Model: Efficient Monte Carlo Simulation with Large Time Steps

Author

Listed:
  • Nicola F. Zaugg
  • Lech A. Grzelak

Abstract

The lifted Heston model is a stochastic volatility model emerging as a Markovian lift of the rough Heston model and the class of rough volatility processes. The model encodes the path dependency of volatility on a set of N square-root state processes driven by a common stochastic factor. While the system is Markovian, simulation schemes such as the Euler scheme exist, but require a small-step, multidimensional simulation of the state processes and are therefore numerically challenging. We propose a novel simulation scheme of the class of implicit integrated variance schemes. The method exploits the near-linear nature between the stochastic driver and the conditional integrated variance process, which allows for a consistent and efficient sampling of the integrated variance process using an inverse Gaussian distribution. Since we establish the linear relation using a linear projection in the L2 space, the method is optimal in an L2 sense and offers a significant efficiency gain over similar methods. We demonstrate that our scheme achieves near-exact accuracy even for coarse discretizations and allows for efficient pricing of volatility options with large time steps.

Suggested Citation

  • Nicola F. Zaugg & Lech A. Grzelak, 2025. "Lifted Heston Model: Efficient Monte Carlo Simulation with Large Time Steps," Papers 2510.08805, arXiv.org.
  • Handle: RePEc:arx:papers:2510.08805
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.08805
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 1995-2013, December.
    2. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
    3. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    4. L. A. Grzelak & J. A. S. Witteveen & M. Suárez-Taboada & C. W. Oosterlee, 2019. "The stochastic collocation Monte Carlo sampler: highly efficient sampling from ‘expensive’ distributions," Quantitative Finance, Taylor & Francis Journals, vol. 19(2), pages 339-356, February.
    5. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    6. Christian Bayer & Simon Breneis, 2023. "Markovian approximations of stochastic Volterra equations with the fractional kernel," Quantitative Finance, Taylor & Francis Journals, vol. 23(1), pages 53-70, January.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    9. Eduardo Abi Jaber & Elie Attal, 2025. "Simulating integrated Volterra square-root processes and Volterra Heston models via Inverse Gaussian," Papers 2504.19885, arXiv.org.
    10. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    11. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Papers 1810.04868, arXiv.org, revised Nov 2019.
    12. Jingtang Ma & Haofei Wu, 2022. "A fast algorithm for simulation of rough volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 447-462, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
    2. Yiru Xi & Hoi Ying Wong, 2021. "Discrete variance swap in a rough volatility economy," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1640-1654, October.
    3. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    4. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    5. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    6. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    8. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    9. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Post-Print hal-03902513, HAL.
    10. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.
    11. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
    12. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
    13. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03902513, HAL.
    14. repec:hal:wpaper:hal-03902513 is not listed on IDEAS
    15. Eduardo Abi Jaber & Nathan de Carvalho, 2024. "Reconciling rough volatility with jumps," Post-Print hal-04295416, HAL.
    16. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    17. Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
    18. Eduardo Abi Jaber, 2020. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Working Papers hal-02412741, HAL.
    19. Ulrich Horst & Wei Xu & Rouyi Zhang, 2024. "Path-dependent Fractional Volterra Equations and the Microstructure of Rough Volatility Models driven by Poisson Random Measures," Papers 2412.16436, arXiv.org.
    20. Antonis Papapantoleon & Jasper Rou, 2024. "A time-stepping deep gradient flow method for option pricing in (rough) diffusion models," Papers 2403.00746, arXiv.org, revised Apr 2025.
    21. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02412741, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.08805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.