Author
Listed:
- Rongwei Liu
- Jin Zheng
- John Cartlidge
Abstract
The optimal asset allocation between risky and risk-free assets is a persistent challenge due to the inherent volatility in financial markets. Conventional methods rely on strict distributional assumptions or non-additive reward ratios, which limit their robustness and applicability to investment goals. To overcome these constraints, this study formulates the optimal two-asset allocation problem as a sequential decision-making task within a Markov Decision Process (MDP). This framework enables the application of reinforcement learning (RL) mechanisms to develop dynamic policies based on simulated financial scenarios, regardless of prerequisites. We use the Kelly criterion to balance immediate reward signals against long-term investment objectives, and we take the novel step of integrating the Time-series Dense Encoder (TiDE) into the Deep Deterministic Policy Gradient (DDPG) RL framework for continuous decision-making. We compare DDPG-TiDE with a simple discrete-action Q-learning RL framework and a passive buy-and-hold investment strategy. Empirical results show that DDPG-TiDE outperforms Q-learning and generates higher risk adjusted returns than buy-and-hold. These findings suggest that tackling the optimal asset allocation problem by integrating TiDE within a DDPG reinforcement learning framework is a fruitful avenue for further exploration.
Suggested Citation
Rongwei Liu & Jin Zheng & John Cartlidge, 2025.
"Deep Reinforcement Learning for Optimal Asset Allocation Using DDPG with TiDE,"
Papers
2508.20103, arXiv.org.
Handle:
RePEc:arx:papers:2508.20103
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.20103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.