IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.02356.html
   My bibliography  Save this paper

Neural Network-Based Algorithmic Trading Systems: Multi-Timeframe Analysis and High-Frequency Execution in Cryptocurrency Markets

Author

Listed:
  • Wv{e}i Zh=ang

Abstract

This paper explores neural network-based approaches for algorithmic trading in cryptocurrency markets. Our approach combines multi-timeframe trend analysis with high-frequency direction prediction networks, achieving positive risk-adjusted returns through statistical modeling and systematic market exploitation. The system integrates diverse data sources including market data, on-chain metrics, and orderbook dynamics, translating these into unified buy/sell pressure signals. We demonstrate how machine learning models can effectively capture cross-timeframe relationships, enabling sub-second trading decisions with statistical confidence.

Suggested Citation

  • Wv{e}i Zh=ang, 2025. "Neural Network-Based Algorithmic Trading Systems: Multi-Timeframe Analysis and High-Frequency Execution in Cryptocurrency Markets," Papers 2508.02356, arXiv.org.
  • Handle: RePEc:arx:papers:2508.02356
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.02356
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Ness, Bonnie & Van Ness, Robert & Yildiz, Serhat, 2021. "Private information in trades, R2, and large stock price movements," Journal of Banking & Finance, Elsevier, vol. 131(C).
    2. Zhang, Xuetong & Zhang, Weiguo, 2023. "Information asymmetry, sentiment interactions, and asset price," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    3. Hendershott, Terrence & Livdan, Dmitry & Schürhoff, Norman, 2015. "Are institutions informed about news?," Journal of Financial Economics, Elsevier, vol. 117(2), pages 249-287.
    4. Andreas Storkenmaier & Martin Wagener & Christof Weinhardt, 2012. "Public information in fragmented markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(2), pages 179-215, June.
    5. Peter Koudijs, 2016. "The Boats That Did Not Sail: Asset Price Volatility in a Natural Experiment," Journal of Finance, American Finance Association, vol. 71(3), pages 1185-1226, June.
    6. Suchanek, Max, 2024. "Social interactions in short squeeze scenarios," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 898-919.
    7. Mohammed-Khalil Ghali & Cecil Pang & Oscar Molina & Carlos Gershenson-Garcia & Daehan Won, 2025. "Forecasting Commodity Price Shocks Using Temporal and Semantic Fusion of Prices Signals and Agentic Generative AI Extracted Economic News," Papers 2508.06497, arXiv.org.
    8. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    9. Sun, Yuxin & Ibikunle, Gbenga, 2017. "Informed trading and the price impact of block trades: A high frequency trading analysis," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 114-129.
    10. Thomas George & Chuan-Yang Hwang & Tavy Ronen, 2010. "Bootstrap refinements in tests of microstructure frictions," Review of Quantitative Finance and Accounting, Springer, vol. 35(1), pages 47-70, July.
    11. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    12. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    13. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    14. Evangelos Benos & Satchit Sagade, 2012. "High-frequency trading behaviour and its impact on market quality: evidence from the UK equity market," Bank of England working papers 469, Bank of England.
    15. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    16. Gao, Xin & Xu, Weidong & Li, Donghui, 2025. "Media coverage and managerial investment learning from stock markets: International evidence," Research in International Business and Finance, Elsevier, vol. 76(C).
    17. Goedde-Menke, Michael & Langer, Thomas & Pfingsten, Andreas, 2014. "Impact of the financial crisis on bank run risk – Danger of the days after," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 522-533.
    18. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    19. Fuertes, Ana-Maria & Phylaktis, Kate & Yan, Cheng, 2019. "Uncovered equity “disparity” in emerging markets," Journal of International Money and Finance, Elsevier, vol. 98(C), pages 1-1.
    20. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.02356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.