IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.16776.html
   My bibliography  Save this paper

Can we have it all? Non-asymptotically valid and asymptotically exact confidence intervals for expectations and linear regressions

Author

Listed:
  • Alexis Derumigny
  • Lucas Girard
  • Yannick Guyonvarch

Abstract

We contribute to bridging the gap between large- and finite-sample inference by studying confidence sets (CSs) that are both non-asymptotically valid and asymptotically exact uniformly (NAVAE) over semi-parametric statistical models. NAVAE CSs are not easily obtained; for instance, we show they do not exist over the set of Bernoulli distributions. We first derive a generic sufficient condition: NAVAE CSs are available as soon as uniform asymptotically exact CSs are. Second, building on that connection, we construct closed-form NAVAE confidence intervals (CIs) in two standard settings -- scalar expectations and linear combinations of OLS coefficients -- under moment conditions only. For expectations, our sole requirement is a bounded kurtosis. In the OLS case, our moment constraints accommodate heteroskedasticity and weak exogeneity of the regressors. Under those conditions, we enlarge the Central Limit Theorem-based CIs, which are asymptotically exact, to ensure non-asymptotic guarantees. Those modifications vanish asymptotically so that our CIs coincide with the classical ones in the limit. We illustrate the potential and limitations of our approach through a simulation study.

Suggested Citation

  • Alexis Derumigny & Lucas Girard & Yannick Guyonvarch, 2025. "Can we have it all? Non-asymptotically valid and asymptotically exact confidence intervals for expectations and linear regressions," Papers 2507.16776, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.16776
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.16776
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.16776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.