IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.15079.html
   My bibliography  Save this paper

Isotonic Quantile Regression Averaging for uncertainty quantification of electricity price forecasts

Author

Listed:
  • Arkadiusz Lipiecki
  • Bartosz Uniejewski

Abstract

Quantifying the uncertainty of forecasting models is essential to assess and mitigate the risks associated with data-driven decisions, especially in volatile domains such as electricity markets. Machine learning methods can provide highly accurate electricity price forecasts, critical for informing the decisions of market participants. However, these models often lack uncertainty estimates, which limits the ability of decision makers to avoid unnecessary risks. In this paper, we propose a novel method for generating probabilistic forecasts from ensembles of point forecasts, called Isotonic Quantile Regression Averaging (iQRA). Building on the established framework of Quantile Regression Averaging (QRA), we introduce stochastic order constraints to improve forecast accuracy, reliability, and computational costs. In an extensive forecasting study of the German day-ahead electricity market, we show that iQRA consistently outperforms state-of-the-art postprocessing methods in terms of both reliability and sharpness. It produces well-calibrated prediction intervals across multiple confidence levels, providing superior reliability to all benchmark methods, particularly coverage-based conformal prediction. In addition, isotonic regularization decreases the complexity of the quantile regression problem and offers a hyperparameter-free approach to variable selection.

Suggested Citation

  • Arkadiusz Lipiecki & Bartosz Uniejewski, 2025. "Isotonic Quantile Regression Averaging for uncertainty quantification of electricity price forecasts," Papers 2507.15079, arXiv.org.
  • Handle: RePEc:arx:papers:2507.15079
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.15079
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.15079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.