IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.19586.html
   My bibliography  Save this paper

Single-Index Quantile Factor Model with Observed Characteristics

Author

Listed:
  • Ruofan Xu
  • Qingliang Fan

Abstract

We propose a characteristics-augmented quantile factor (QCF) model, where unknown factor loading functions are linked to a large set of observed individual-level (e.g., bond- or stock-specific) covariates via a single-index projection. The single-index specification offers a parsimonious, interpretable, and statistically efficient way to nonparametrically characterize the time-varying loadings, while avoiding the curse of dimensionality in flexible nonparametric models. Using a three-step sieve estimation procedure, the QCF model demonstrates high in-sample and out-of-sample accuracy in simulations. We establish asymptotic properties for estimators of the latent factor, loading functions, and index parameters. In an empirical study, we analyze the dynamic distributional structure of U.S. corporate bond returns from 2003 to 2020. Our method outperforms the benchmark quantile Fama-French five-factor model and quantile latent factor model, particularly in the tails ($\tau=0.05, 0.95$). The model reveals state-dependent risk exposures driven by characteristics such as bond and equity volatility, coupon, and spread. Finally, we provide economic interpretations of the latent factors.

Suggested Citation

  • Ruofan Xu & Qingliang Fan, 2025. "Single-Index Quantile Factor Model with Observed Characteristics," Papers 2506.19586, arXiv.org.
  • Handle: RePEc:arx:papers:2506.19586
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.19586
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.19586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.