IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.07291.html
   My bibliography  Save this paper

Subgame Perfect Nash Equilibria in Large Reinsurance Markets

Author

Listed:
  • Maria Andraos
  • Mario Ghossoub
  • Michael B. Zhu

Abstract

We consider a model of a reinsurance market consisting of multiple insurers on the demand side and multiple reinsurers on the supply side, thereby providing a unifying framework and extension of the recent literature on optimality and equilibria in reinsurance markets. Each insurer has preferences represented by a general Choquet risk measure and can purchase coverage from any or all reinsurers. Each reinsurer has preferences represented by a general Choquet risk measure and can provide coverage to any or all insurers. Pricing in this market is done via a nonlinear pricing rule given by a Choquet integral. We model the market as a sequential game in which the reinsurers have the first-move advantage. We characterize the Subgame Perfect Nash Equilibria in this market in some cases of interest, and we examine their Pareto efficiency. In addition, we consider two special cases of our model that correspond to existing models in the related literature, and we show how our findings extend these previous results. Finally, we illustrate our results in a numerical example.

Suggested Citation

  • Maria Andraos & Mario Ghossoub & Michael B. Zhu, 2025. "Subgame Perfect Nash Equilibria in Large Reinsurance Markets," Papers 2506.07291, arXiv.org.
  • Handle: RePEc:arx:papers:2506.07291
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.07291
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Lv & Shen, Yang, 2018. "On A New Paradigm Of Optimal Reinsurance: A Stochastic Stackelberg Differential Game Between An Insurer And A Reinsurer," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 905-960, May.
    2. Guillaume Carlier & Rose-Anne Dana, 2003. "Pareto efficient insurance contracts when the insurer's cost function is discontinuous," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 871-893, June.
    3. Lemaire, Jean, 1977. "Exchange de Risques entre Assureurs et Theorie des Jeux," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 155-180, January.
    4. repec:dau:papers:123456789/5394 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghossoub, Mario & Zhu, Michael B., 2024. "Stackelberg equilibria with multiple policyholders," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 189-201.
    2. Boonen, Tim J. & Ghossoub, Mario, 2023. "Bowley vs. Pareto optima in reinsurance contracting," European Journal of Operational Research, Elsevier, vol. 307(1), pages 382-391.
    3. Zhu, Michael B. & Ghossoub, Mario & Boonen, Tim J., 2023. "Equilibria and efficiency in a reinsurance market," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 24-49.
    4. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Zhang, Yawen & Zhang, Caibin, 2024. "Stackelberg differential reinsurance and investment game for a dependent risk model with Ornstein–Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 214(C).
    6. Denuit, Michel & Dhaene, Jan & Ghossoub, Mario & Robert, Christian Y., 2025. "Comonotonicity and Pareto optimality, with application to collaborative insurance," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 1-16.
    7. Ghossoub, Mario, 2011. "Monotone equimeasurable rearrangements with non-additive probabilities," MPRA Paper 37629, University Library of Munich, Germany, revised 23 Mar 2012.
    8. repec:dau:papers:123456789/5389 is not listed on IDEAS
    9. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    10. Michel Denuit & Jan Dhaene & Christian Y. Robert, 2022. "Risk‐sharing rules and their properties, with applications to peer‐to‐peer insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 615-667, September.
    11. Li, Dongchen & Zeng, Yan & Zhao, Yixing, 2025. "The impact of intermediaries on insurance demand and pricing," Insurance: Mathematics and Economics, Elsevier, vol. 122(C), pages 143-156.
    12. Burgert, Christian & Rüschendorf, Ludger, 2008. "Allocation of risks and equilibrium in markets with finitely many traders," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 177-188, February.
    13. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    14. Chi, Yichun & Zheng, Jiakun & Zhuang, Shengchao, 2022. "S-shaped narrow framing, skewness and the demand for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 279-292.
    15. Michel Denuit & Christian Y. Robert, 2024. "Conditional Mean Risk Sharing of Independent Discrete Losses in Large Pools," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-22, December.
    16. Ghossoub, Mario & Jiang, Wenjun & Ren, Jiandong, 2022. "Pareto-optimal reinsurance under individual risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 307-325.
    17. Chi, Yichun & Zhuang, Sheng Chao, 2020. "Optimal insurance with belief heterogeneity and incentive compatibility," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 104-114.
    18. Asmussen, Søren & Christensen, Bent Jesper & Thøgersen, Julie, 2019. "Nash equilibrium premium strategies for push–pull competition in a frictional non-life insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 92-100.
    19. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2023. "Optimal moral-hazard-free reinsurance under extended distortion premium principles," Papers 2304.08819, arXiv.org.
    20. Liang, Zongxia & Xia, Yi & Zou, Bin, 2024. "A two-layer stochastic game approach to reinsurance contracting and competition," Insurance: Mathematics and Economics, Elsevier, vol. 119(C), pages 226-237.
    21. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.07291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.